These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34562817)

  • 21. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads.
    Ardolino F; Arena U
    Waste Manag; 2019 Mar; 87():441-453. PubMed ID: 31109545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.
    Rittmann SK
    Adv Biochem Eng Biotechnol; 2015; 151():117-35. PubMed ID: 26337846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society.
    Pérez V; Mota CR; Muñoz R; Lebrero R
    Chemosphere; 2020 Sep; 255():126929. PubMed ID: 32402877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ Biogas Upgrading by CO
    Fu S; Angelidaki I; Zhang Y
    Trends Biotechnol; 2021 Apr; 39(4):336-347. PubMed ID: 32917407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the economic and environmental sustainability of household food waste management in the UK: Current situation and future scenarios.
    Slorach PC; Jeswani HK; Cuéllar-Franca R; Azapagic A
    Sci Total Environ; 2020 Mar; 710():135580. PubMed ID: 31785911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life cycle assessment of biomethane use in Argentina.
    Morero B; Groppelli E; Campanella EA
    Bioresour Technol; 2015 Apr; 182():208-216. PubMed ID: 25700340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste.
    Lucian M; Volpe M; Merzari F; Wüst D; Kruse A; Andreottola G; Fiori L
    Bioresour Technol; 2020 Oct; 314():123734. PubMed ID: 32622280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of methane emissions from UK biogas plants.
    Bakkaloglu S; Lowry D; Fisher RE; France JL; Brunner D; Chen H; Nisbet EG
    Waste Manag; 2021 Apr; 124():82-93. PubMed ID: 33610114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis.
    Pérez V; Moltó JL; Lebrero R; Muñoz R
    ACS Sustain Chem Eng; 2021 Dec; 9(51):17371-17380. PubMed ID: 34976443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biogas upgrading and utilization: Current status and perspectives.
    Angelidaki I; Treu L; Tsapekos P; Luo G; Campanaro S; Wenzel H; Kougias PG
    Biotechnol Adv; 2018; 36(2):452-466. PubMed ID: 29360505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of biogas upgrading technologies and future perspectives: a review.
    Kapoor R; Ghosh P; Kumar M; Vijay VK
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11631-11661. PubMed ID: 30877529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technologies for Biogas Upgrading to Biomethane: A Review.
    Adnan AI; Ong MY; Nomanbhay S; Chew KW; Show PL
    Bioengineering (Basel); 2019 Oct; 6(4):. PubMed ID: 31581659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.
    Woon KS; Lo IM
    Waste Manag; 2016 Jan; 47(Pt A):3-10. PubMed ID: 25890872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.
    Wu B; Zhang X; Shang D; Bao D; Zhang S; Zheng T
    Bioresour Technol; 2016 Aug; 214():722-728. PubMed ID: 27209454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.
    Dhiman SS; Shrestha N; David A; Basotra N; Johnson GR; Chadha BS; Gadhamshetty V; Sani RK
    Bioresour Technol; 2018 Jun; 258():270-278. PubMed ID: 29544100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK.
    Walker M; Theaker H; Yaman R; Poggio D; Nimmo W; Bywater A; Blanch G; Pourkashanian M
    Waste Manag; 2017 Mar; 61():258-268. PubMed ID: 28185851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Material flow and sustainability analyses of biorefining of municipal solid waste.
    Sadhukhan J; Martinez-Hernandez E
    Bioresour Technol; 2017 Nov; 243():135-146. PubMed ID: 28651133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Waste to energy: valorization of spent tea waste by anaerobic digestion.
    Gozde Ozbayram E
    Environ Technol; 2021 Sep; 42(22):3554-3560. PubMed ID: 32530785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.