These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34562905)

  • 1. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices.
    Miglione A; Napoletano M; Cinti S
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Multiplexed Electrochemical Aptasensor for the Detection of Cyanotoxins.
    Rhouati A; Zourob M
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry.
    Haddad SP; Bobbitt JM; Taylor RB; Lovin LM; Conkle JL; Chambliss CK; Brooks BW
    J Chromatogr A; 2019 Aug; 1599():66-74. PubMed ID: 30961962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk quick sketch: Soil captured most anatoxin-a and microcystin-RR rather than cylindrospermopsin and microcystin-LA/-LY.
    Zhang Y; Duy SV; Whalen JK; Munoz G; Sauvé S
    Sci Total Environ; 2024 Nov; 951():175418. PubMed ID: 39127195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry.
    Oehrle SA; Southwell B; Westrick J
    Toxicon; 2010 May; 55(5):965-72. PubMed ID: 19878689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxins of cyanobacteria.
    van Apeldoorn ME; van Egmond HP; Speijers GJ; Bakker GJ
    Mol Nutr Food Res; 2007 Jan; 51(1):7-60. PubMed ID: 17195276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia.
    León C; Peñuela GA
    Toxicon; 2019 Sep; 167():38-48. PubMed ID: 31185239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis.
    Vasas G; Gáspár A; Páger C; Surányi G; Máthé C; Hamvas MM; Borbely G
    Electrophoresis; 2004 Jan; 25(1):108-15. PubMed ID: 14730574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry for the analysis of cyanotoxins in algal blooms.
    Fayad PB; Roy-Lachapelle A; Duy SV; Prévost M; Sauvé S
    Toxicon; 2015 Dec; 108():167-75. PubMed ID: 26494036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone.
    Li Z; Zhang S; Yu T; Dai Z; Wei Q
    Anal Chem; 2019 Aug; 91(16):10448-10457. PubMed ID: 31192585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO.
    Munoz M; Nieto-Sandoval J; Cirés S; de Pedro ZM; Quesada A; Casas JA
    Water Res; 2019 Oct; 163():114853. PubMed ID: 31310856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater.
    Vogiazi V; de la Cruz A; Mishra S; Shanov V; Heineman WR; Dionysiou DD
    ACS Sens; 2019 May; 4(5):1151-1173. PubMed ID: 31056912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of usefulness of Microbial Assay for Risk Assessment (MARA) in the cyanobacterial toxicity estimation.
    Sieroslawska A
    Environ Monit Assess; 2014 Jul; 186(7):4629-36. PubMed ID: 24682641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conventional laboratory methods for cyanotoxins.
    Lawton LA; Edwards C
    Adv Exp Med Biol; 2008; 619():513-37. PubMed ID: 18461782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art.
    Zhang W; Dixon MB; Saint C; Teng KS; Furumai H
    ACS Sens; 2018 Jul; 3(7):1233-1245. PubMed ID: 29974739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants.
    Szlag DC; Sinclair JL; Southwell B; Westrick JA
    Toxins (Basel); 2015 Jun; 7(6):2198-220. PubMed ID: 26075379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters.
    Park HD; Watanabe MF; Harda K; Nagai H; Suzuki M; Watanabe M; Hayashi H
    Nat Toxins; 1993; 1(6):353-60. PubMed ID: 8167957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey of cyanobacterial toxins in Czech water reservoirs--the first observation of neurotoxic saxitoxins.
    Jančula D; Straková L; Sadílek J; Maršálek B; Babica P
    Environ Sci Pollut Res Int; 2014; 21(13):8006-15. PubMed ID: 24659433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.
    Merel S; Walker D; Chicana R; Snyder S; Baurès E; Thomas O
    Environ Int; 2013 Sep; 59():303-27. PubMed ID: 23892224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.