These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34562918)

  • 1. A Vascular Intervention Assist Device Using Bi-Motional Roller Cartridge Structure and Clinical Evaluation.
    Choi J; Park S; Kim YH; Moon Y; Choi J
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Master-Slave Interventional Surgery Robot with Force Feedback and Collaborative Operation.
    Song Y; Li L; Tian Y; Li Z; Yin X
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Operation Support Robot with Sensory-Motor Feedback System for Neuroendovascular Intervention.
    Miyachi S; Nagano Y; Hironaka T; Kawaguchi R; Ohshima T; Matsuo N; Maejima R; Takayasu M
    World Neurosurg; 2019 Jul; 127():e617-e623. PubMed ID: 30930317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel robotic system for vascular intervention: principles, performances, and applications.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):671-683. PubMed ID: 30739274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application research of master-slave cranio-maxillofacial surgical robot based on force feedback.
    Xu C; Wang Y; Zhou C; Zhang Z; Xie L; Andersson K; Feng L
    Proc Inst Mech Eng H; 2021 May; 235(5):583-596. PubMed ID: 33645309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of vascular interventional robot system for complex coronary artery lesions.
    Yu H; Wang H; Chang J; Liu W; Wang F; Niu J
    Med Biol Eng Comput; 2023 Jun; 61(6):1365-1380. PubMed ID: 36705768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel remote-controlled robotic system for cerebrovascular intervention.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Med Robot; 2018 Dec; 14(6):e1943. PubMed ID: 30062697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, development and evaluation of an ergonomically designed dual-use mechanism for robot-assisted cardiovascular intervention.
    Peng W; Wang Z; Xie H; Gu L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):205-216. PubMed ID: 36190615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Performance Evaluation of a Novel Vascular Robotic System for Complex Percutaneous Coronary Interventions.
    Zhao HL; Liu SQ; Zhou XH; Xie XL; Hou ZG; Zhou YJ; Zhang LS; Gui MJ; Wang JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4679-4682. PubMed ID: 34892257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a remote-control system for catheterization capable of high-speed force feedback.
    Takagi R; Osada K; Hanafusa A; Takagi M; Mohamaddan SB; Mitsui K; Anzai H
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):763-773. PubMed ID: 36689147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.