These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34563027)

  • 1. Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering.
    Bonetti L; De Nardo L; Farè S
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels.
    Bonetti L; De Nardo L; Variola F; Fare' S
    Soft Matter; 2020 Jun; 16(24):5577-5587. PubMed ID: 32406462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.
    Cochis A; Bonetti L; Sorrentino R; Contessi Negrini N; Grassi F; Leigheb M; Rimondini L; Farè S
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials.
    Bonetti L; De Nardo L; Farè S
    Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking strategies in modulating methylcellulose hydrogel properties.
    Bonetti L; De Nardo L; Farè S
    Soft Matter; 2023 Oct; 19(41):7869-7884. PubMed ID: 37817578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylcellulose Based Thermally Reversible Hydrogels.
    Forghani A; Devireddy R
    Methods Mol Biol; 2018; 1773():41-51. PubMed ID: 29687380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Sajkiewicz P
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin Poly(glycidyl ether) Coatings on Polystyrene for Temperature-Triggered Human Dermal Fibroblast Sheet Fabrication.
    Stöbener DD; Uckert M; Cuellar-Camacho JL; Hoppensack A; Weinhart M
    ACS Biomater Sci Eng; 2017 Sep; 3(9):2155-2165. PubMed ID: 33440564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications.
    Sá-Lima H; Tuzlakoglu K; Mano JF; Reis RL
    J Biomed Mater Res A; 2011 Sep; 98(4):596-603. PubMed ID: 21721116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels.
    Yeo YH; Park WH
    Carbohydr Polym; 2021 Apr; 258():117705. PubMed ID: 33593575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Rogujski P; Stanaszek L; Lukomska B; Sajkiewicz P
    RSC Adv; 2022 Sep; 12(41):26882-26894. PubMed ID: 36320849
    [No Abstract]   [Full Text] [Related]  

  • 15. Thermoresponsive poly(glycidyl ether) brushes on gold: Surface engineering parameters and their implication for cell sheet fabrication.
    Heinen S; Cuéllar-Camacho JL; Weinhart M
    Acta Biomater; 2017 Sep; 59():117-128. PubMed ID: 28647625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability.
    Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering.
    Villa C; Martello F; Erratico S; Tocchio A; Belicchi M; Lenardi C; Torrente Y
    J Tissue Eng Regen Med; 2017 Jan; 11(1):187-196. PubMed ID: 24799388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications.
    Thirumala S; Gimble JM; Devireddy RV
    Cells; 2013 Jun; 2(3):460-75. PubMed ID: 24709793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust methylcellulose hydrogels reinforced with chitin nanocrystals.
    Jung HS; Kim HC; Ho Park W
    Carbohydr Polym; 2019 Jun; 213():311-319. PubMed ID: 30879674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.