These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34563116)

  • 1. Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders.
    Ferré Q; Chèneby J; Puthier D; Capponi C; Ballester B
    BMC Bioinformatics; 2021 Sep; 22(1):460. PubMed ID: 34563116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate allocation of multimapped reads enables regulatory element analysis at repeats.
    Morrissey A; Shi J; James DQ; Mahony S
    Genome Res; 2024 Jul; 34(6):937-951. PubMed ID: 38986578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection.
    Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM
    Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti.
    Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M
    BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes.
    Polit L; Kerdivel G; Gregoricchio S; Esposito M; Guillouf C; Boeva V
    BMC Bioinformatics; 2021 Aug; 22(1):407. PubMed ID: 34404353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allo: Accurate allocation of multi-mapped reads enables regulatory element analysis at repeats.
    Morrissey A; Shi J; James DQ; Mahony S
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational identification of cell-specific variable regions in ChIP-seq data.
    Andreani T; Albrecht S; Fontaine JF; Andrade-Navarro MA
    Nucleic Acids Res; 2020 May; 48(9):e53. PubMed ID: 32187374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ReMap 2020: a database of regulatory regions from an integrative analysis of Human and Arabidopsis DNA-binding sequencing experiments.
    Chèneby J; Ménétrier Z; Mestdagh M; Rosnet T; Douida A; Rhalloussi W; Bergon A; Lopez F; Ballester B
    Nucleic Acids Res; 2020 Jan; 48(D1):D180-D188. PubMed ID: 31665499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population size estimation for quality control of ChIP-Seq datasets.
    Kolmykov SK; Kondrakhin YV; Yevshin IS; Sharipov RN; Ryabova AS; Kolpakov FA
    PLoS One; 2019; 14(8):e0221760. PubMed ID: 31465497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based enhancement of epigenomics data with AtacWorks.
    Lal A; Chiang ZD; Yakovenko N; Duarte FM; Israeli J; Buenrostro JD
    Nat Commun; 2021 Mar; 12(1):1507. PubMed ID: 33686069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIPSummitDB: a ChIP-seq-based database of human transcription factor binding sites and the topological arrangements of the proteins bound to them.
    Czipa E; Schiller M; Nagy T; Kontra L; Steiner L; Koller J; Pálné-Szén O; Barta E
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 31942977
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 20. SMARTcleaner: identify and clean off-target signals in SMART ChIP-seq analysis.
    Zhao D; Zheng D
    BMC Bioinformatics; 2018 Dec; 19(1):544. PubMed ID: 30587107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.