These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 34563138)

  • 1. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data.
    Nasejje JB; Mwambi H; Dheda K; Lesosky M
    BMC Med Res Methodol; 2017 Jul; 17(1):115. PubMed ID: 28754093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study.
    Baralou V; Kalpourtzi N; Touloumi G
    Biom J; 2023 Aug; 65(6):e2100380. PubMed ID: 36169048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unbiased split variable selection for random survival forests using maximally selected rank statistics.
    Wright MN; Dankowski T; Ziegler A
    Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
    Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E
    BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest.
    Yang Y; Ma X; Wang Y; Ding X
    Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk factors associated with major adverse cardiac and cerebrovascular events following percutaneous coronary intervention: a 10-year follow-up comparing random survival forest and Cox proportional-hazards model.
    Farhadian M; Dehdar Karsidani S; Mozayanimonfared A; Mahjub H
    BMC Cardiovasc Disord; 2021 Jan; 21(1):38. PubMed ID: 33461487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel head and neck cancer survival analysis approach: random survival forests versus Cox proportional hazards regression.
    Datema FR; Moya A; Krause P; Bäck T; Willmes L; Langeveld T; Baatenburg de Jong RJ; Blom HM
    Head Neck; 2012 Jan; 34(1):50-8. PubMed ID: 21322080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China.
    Li X; Yang Z; Li J; Wang G; Sun A; Wang Y; Zhang W; Liu Y; Lei H
    Heliyon; 2024 Jun; 10(12):e32788. PubMed ID: 39022101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network.
    Asghar N; Khalil U; Ahmad B; Alshanbari HM; Hamraz M; Ahmad B; Khan DM
    BMC Med Inform Decis Mak; 2024 May; 24(1):120. PubMed ID: 38715002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework.
    Bussy S; Veil R; Looten V; Burgun A; Gaïffas S; Guilloux A; Ranque B; Jannot AS
    BMC Med Res Methodol; 2019 Mar; 19(1):50. PubMed ID: 30841867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival prediction models since liver transplantation - comparisons between Cox models and machine learning techniques.
    Kantidakis G; Putter H; Lancia C; Boer J; Braat AE; Fiocco M
    BMC Med Res Methodol; 2020 Nov; 20(1):277. PubMed ID: 33198650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis.
    Dietrich S; Floegel A; Troll M; Kühn T; Rathmann W; Peters A; Sookthai D; von Bergen M; Kaaks R; Adamski J; Prehn C; Boeing H; Schulze MB; Illig T; Pischon T; Knüppel S; Wang-Sattler R; Drogan D
    Int J Epidemiol; 2016 Oct; 45(5):1406-1420. PubMed ID: 27591264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy.
    Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ
    Front Oncol; 2020; 10():551420. PubMed ID: 33194609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
    Speiser JL
    J Biomed Inform; 2021 May; 117():103763. PubMed ID: 33781921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Predicting prolonged length of intensive care unit stay
    Wu JY; Lin Y; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.