BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 34563205)

  • 1. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner.
    Sabbir MG; Taylor CG; Zahradka P
    Cell Commun Signal; 2021 Sep; 19(1):98. PubMed ID: 34563205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis.
    Sabbir MG
    Cell Commun Signal; 2020 May; 18(1):80. PubMed ID: 32460794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism.
    Sabbir MG; Taylor CG; Zahradka P
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118763. PubMed ID: 32485269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adiponectin enhances the bioenergetics of cardiac myocytes via an AMPK- and succinate dehydrogenase-dependent mechanism.
    Jeon YH; He M; Austin J; Shin H; Pfleger J; Abdellatif M
    Cell Signal; 2021 Feb; 78():109866. PubMed ID: 33271223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function.
    Moosavi B; Zhu XL; Yang WC; Yang GF
    Biol Chem; 2020 Feb; 401(3):319-330. PubMed ID: 31408429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Akt activation by Ca
    Gocher AM; Azabdaftari G; Euscher LM; Dai S; Karacosta LG; Franke TF; Edelman AM
    J Biol Chem; 2017 Aug; 292(34):14188-14204. PubMed ID: 28634229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of CaMKK2 from the liver lowers blood glucose and improves whole-body glucose tolerance in the mouse.
    Anderson KA; Lin F; Ribar TJ; Stevens RD; Muehlbauer MJ; Newgard CB; Means AR
    Mol Endocrinol; 2012 Feb; 26(2):281-91. PubMed ID: 22240810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carney triad, SDH-deficient tumors, and Sdhb+/- mice share abnormal mitochondria.
    Szarek E; Ball ER; Imperiale A; Tsokos M; Faucz FR; Giubellino A; Moussallieh FM; Namer IJ; Abu-Asab MS; Pacak K; Taïeb D; Carney JA; Stratakis CA
    Endocr Relat Cancer; 2015 Jun; 22(3):345-52. PubMed ID: 25808178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional consequences of succinate dehydrogenase subunit B mutations.
    Kim E; Rath EM; Tsang VH; Duff AP; Robinson BG; Church WB; Benn DE; Dwight T; Clifton-Bligh RJ
    Endocr Relat Cancer; 2015 Jun; 22(3):387-97. PubMed ID: 25972245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-mediated assembly of succinate dehydrogenase and its cofactors.
    Van Vranken JG; Na U; Winge DR; Rutter J
    Crit Rev Biochem Mol Biol; 2015; 50(2):168-80. PubMed ID: 25488574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate.
    Goncalves J; Moog S; Morin A; Gentric G; Müller S; Morrell AP; Kluckova K; Stewart TJ; Andoniadou CL; Lussey-Lepoutre C; Bénit P; Thakker A; Vettore L; Roberts J; Rodriguez R; Mechta-Grigoriou F; Gimenez-Roqueplo AP; Letouzé E; Tennant DA; Favier J
    Cancer Res; 2021 Jul; 81(13):3480-3494. PubMed ID: 34127497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of mitochondrial succinate dehydrogenase in human health and disease.
    Cao K; Xu J; Cao W; Wang X; Lv W; Zeng M; Zou X; Liu J; Feng Z
    Free Radic Biol Med; 2023 Oct; 207():247-259. PubMed ID: 37490987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia.
    Gill AJ
    Pathology; 2012 Jun; 44(4):285-92. PubMed ID: 22544211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mitochondrial function in the invasiveness of human colon cancer cells.
    Lin CS; Liu LT; Ou LH; Pan SC; Lin CI; Wei YH
    Oncol Rep; 2018 Jan; 39(1):316-330. PubMed ID: 29138850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial LYR protein SDHAF1 is required for succinate dehydrogenase activity in Arabidopsis.
    Li Y; Belt K; Alqahtani SF; Saha S; Fenske R; Van Aken O; Whelan J; Millar AH; Murcha MW; Huang S
    Plant J; 2022 Apr; 110(2):499-512. PubMed ID: 35080330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly.
    Ziemann M; Lim SC; Kang Y; Samuel S; Sanchez IL; Gantier M; Stojanovski D; McKenzie M
    J Mol Biol; 2022 Jan; 434(2):167361. PubMed ID: 34808225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry.
    Ross JM
    J Vis Exp; 2011 Nov; (57):e3266. PubMed ID: 22143245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warburg effect's manifestation in aggressive pheochromocytomas and paragangliomas: insights from a mouse cell model applied to human tumor tissue.
    Fliedner SM; Kaludercic N; Jiang XS; Hansikova H; Hajkova Z; Sladkova J; Limpuangthip A; Backlund PS; Wesley R; Martiniova L; Jochmanova I; Lendvai NK; Breza J; Yergey AL; Paolocci N; Tischler AS; Zeman J; Porter FD; Lehnert H; Pacak K
    PLoS One; 2012; 7(7):e40949. PubMed ID: 22859959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations.
    Janeway KA; Kim SY; Lodish M; Nosé V; Rustin P; Gaal J; Dahia PL; Liegl B; Ball ER; Raygada M; Lai AH; Kelly L; Hornick JL; ; O'Sullivan M; de Krijger RR; Dinjens WN; Demetri GD; Antonescu CR; Fletcher JA; Helman L; Stratakis CA
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):314-8. PubMed ID: 21173220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies short-term beneficial physiological stress in mitochondria.
    Zakharchenko MV; Zakharchenko AV; Khunderyakova NV; Tutukina MN; Simonova MA; Vasilieva AA; Romanova OI; Fedotcheva NI; Litvinova EG; Maevsky EI; Zinchenko VP; Berezhnov AV; Morgunov IG; Gulayev AA; Kondrashova MN
    Int J Biochem Cell Biol; 2013 Jan; 45(1):190-200. PubMed ID: 22814171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.