These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34563271)

  • 1. GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics.
    Sicho M; Liu X; Svozil D; van Westen GJP
    J Cheminform; 2021 Sep; 13(1):73. PubMed ID: 34563271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space.
    Šícho M; Luukkonen S; van den Maagdenberg HW; Schoenmaker L; Béquignon OJM; van Westen GJP
    J Chem Inf Model; 2023 Jun; 63(12):3629-3636. PubMed ID: 37272707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Applied to Ligand-Based De Novo Drug Design.
    Palazzesi F; Pozzan A
    Methods Mol Biol; 2022; 2390():273-299. PubMed ID: 34731474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction.
    Walters WP; Barzilay R
    Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to the BioChemical Library (BCL): An Application-Based Open-Source Toolkit for Integrated Cheminformatics and Machine Learning in Computer-Aided Drug Discovery.
    Brown BP; Vu O; Geanes AR; Kothiwale S; Butkiewicz M; Lowe EW; Mueller R; Pape R; Mendenhall J; Meiler J
    Front Pharmacol; 2022; 13():833099. PubMed ID: 35264967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for molecular generation.
    Xu Y; Lin K; Wang S; Wang L; Cai C; Song C; Lai L; Pei J
    Future Med Chem; 2019 Mar; 11(6):567-597. PubMed ID: 30698019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descriptor-Driven de Novo Design Algorithms for DOCK6 Using RDKit.
    Duarte Ramos Matos G; Pak S; Rizzo RC
    J Chem Inf Model; 2023 Sep; 63(18):5803-5822. PubMed ID: 37698425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioclipse 2: a scriptable integration platform for the life sciences.
    Spjuth O; Alvarsson J; Berg A; Eklund M; Kuhn S; Mäsak C; Torrance G; Wagener J; Willighagen EL; Steinbeck C; Wikberg JE
    BMC Bioinformatics; 2009 Dec; 10():397. PubMed ID: 19958528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BRADSHAW: a system for automated molecular design.
    Green DVS; Pickett S; Luscombe C; Senger S; Marcus D; Meslamani J; Brett D; Powell A; Masson J
    J Comput Aided Mol Des; 2020 Jul; 34(7):747-765. PubMed ID: 31637565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Has Artificial Intelligence Impacted Drug Discovery?
    Patronov A; Papadopoulos K; Engkvist O
    Methods Mol Biol; 2022; 2390():153-176. PubMed ID: 34731468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MolScore: a scoring, evaluation and benchmarking framework for generative models in de novo drug design.
    Thomas M; O'Boyle NM; Bender A; De Graaf C
    J Cheminform; 2024 May; 16(1):64. PubMed ID: 38816825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse-QSPR for de novo Design: A Review.
    Gantzer P; Creton B; Nieto-Draghi C
    Mol Inform; 2020 Apr; 39(4):e1900087. PubMed ID: 31682079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinvent 4: Modern AI-driven generative molecule design.
    Loeffler HH; He J; Tibo A; Janet JP; Voronov A; Mervin LH; Engkvist O
    J Cheminform; 2024 Feb; 16(1):20. PubMed ID: 38383444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.