BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 3456345)

  • 1. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 4. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin.
    Marcillat O; Zhang Y; Davies KJ
    Biochem J; 1989 Apr; 259(1):181-9. PubMed ID: 2719642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adriamycin and derivatives interaction with the mitochondrial membrane: O2 consumption and free radicals formation.
    Pollakis G; Goormaghtigh E; Delmelle M; Lion Y; Ruysschaert JM
    Res Commun Chem Pathol Pharmacol; 1984 Jun; 44(3):445-59. PubMed ID: 6463367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity.
    Gille L; Nohl H
    Free Radic Biol Med; 1997; 23(5):775-82. PubMed ID: 9296455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [One- and two-electron reduction of ubiquinone homologs by NADH- dehydrogenase preparations from the mitochondrial respiratory chain].
    Sled' VD; Zinich VN; Kotliar AB
    Biokhimiia; 1989 Sep; 54(9):1571-5. PubMed ID: 2590688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquinol:cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in unenergized and energized submitochondrial particles.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1997 Jul; 272(27):16928-33. PubMed ID: 9202003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide anion production by adriamycinol from cardiac sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG; Agrillo MR; Citti L; Danesi R; Del Tacca M
    Anticancer Res; 1986; 6(5):1231-5. PubMed ID: 3026233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin.
    Thornalley PJ; Bannister WH; Bannister JV
    Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines.
    Nohl H; Gille L; Staniek K
    Z Naturforsch C J Biosci; 1998; 53(3-4):279-85. PubMed ID: 9618942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG; Kotlyar AB; Karliner JS; Cecchini G; Vinogradov AD
    Biochemistry; 2007 Sep; 46(38):10971-8. PubMed ID: 17760425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.