BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34563654)

  • 41. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.
    Zeng Q; Liu Y; Zhao H; Sun M; Li X
    Environ Pollut; 2017 Apr; 223():676-684. PubMed ID: 28196722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network.
    Kilicarslan S; Adem K; Celik M
    Med Hypotheses; 2020 Apr; 137():109577. PubMed ID: 31991364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine fault detection methods based on machine learning algorithms: A review.
    Ciaburro G
    Math Biosci Eng; 2022 Aug; 19(11):11453-11490. PubMed ID: 36124599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Survival prediction among heart patients using machine learning techniques.
    Almazroi AA
    Math Biosci Eng; 2022 Jan; 19(1):134-145. PubMed ID: 34902984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy.
    Liu Y; Wang Z; Zhou Z; Xiong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121274. PubMed ID: 35500354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification.
    Cong G; Yamamoto N; Inoue T; Maegami Y; Ohno M; Kita S; Namiki S; Yamada K
    Nat Commun; 2022 Jun; 13(1):3261. PubMed ID: 35773261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of machine learning and its improvement technology in modeling of total energy consumption of air conditioning water system.
    Zhu Q; Liu M; Liu H; Zhu Y
    Math Biosci Eng; 2022 Mar; 19(5):4841-4855. PubMed ID: 35430843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine-intelligence for developing a potent signature to predict ovarian response to tailor assisted reproduction technology.
    Yan S; Jin W; Ding J; Yin T; Zhang Y; Yang J
    Aging (Albany NY); 2021 May; 13(13):17137-17154. PubMed ID: 33999860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets.
    Zorn KM; Lane TR; Russo DP; Clark AM; Makarov V; Ekins S
    Mol Pharm; 2019 Apr; 16(4):1620-1632. PubMed ID: 30779585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review.
    Jorayeva M; Akbulut A; Catal C; Mishra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building a Cardiovascular Disease Prediction Model for Smartwatch Users Using Machine Learning: Based on the Korea National Health and Nutrition Examination Survey.
    Kim MJ
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of Chemometric Problems in Food Analysis Using Non-Linear Methods.
    Rocha WFC; Prado CBD; Blonder N
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32630676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data.
    Ou Yang WY; Lai CC; Tsou MT; Hwang LC
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Osteoporosis risk prediction using machine learning and conventional methods.
    Kim SK; Yoo TK; Oh E; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():188-91. PubMed ID: 24109656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability.
    Lou H; Chung JI; Kiang YH; Xiao LY; Hageman MJ
    Int J Pharm; 2019 Jan; 555():368-379. PubMed ID: 30468845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach.
    Maharjan R; Hada S; Lee JE; Han HK; Kim KH; Seo HJ; Foged C; Jeong SH
    Int J Pharm; 2023 Jun; 640():123012. PubMed ID: 37142140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the use of machine learning algorithms in forensic anthropology.
    Nikita E; Nikitas P
    Leg Med (Tokyo); 2020 Nov; 47():101771. PubMed ID: 32795933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.