These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34563683)

  • 1. Information redundancy across spatial scales modulates early visual cortical processing.
    Petras K; Ten Oever S; Dalal SS; Goffaux V
    Neuroimage; 2021 Dec; 244():118613. PubMed ID: 34563683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-to-fine information integration in human vision.
    Petras K; Ten Oever S; Jacobs C; Goffaux V
    Neuroimage; 2019 Feb; 186():103-112. PubMed ID: 30403971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.
    Müller MM; Gundlach C
    Psychophysiology; 2017 Mar; 54(3):429-443. PubMed ID: 27990660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.
    Revina Y; Petro LS; Muckli L
    Neuroimage; 2018 Oct; 180(Pt A):280-290. PubMed ID: 28951158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early and late effects of objecthood and spatial frequency on event-related potentials and gamma band activity.
    Craddock M; Martinovic J; Müller MM
    BMC Neurosci; 2015 Feb; 16():6. PubMed ID: 25886858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of cross-frequency spatial phase relationships in human visual cortex.
    Henriksson L; Hyvärinen A; Vanni S
    J Neurosci; 2009 Nov; 29(45):14342-51. PubMed ID: 19906981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli.
    Nara S; Lizarazu M; Richter CG; Dima DC; Cichy RM; Bourguignon M; Molinaro N
    Neuroimage; 2021 Oct; 239():118314. PubMed ID: 34175428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-uniform phase sensitivity in spatial frequency maps of the human visual cortex.
    Farivar R; Clavagnier S; Hansen BC; Thompson B; Hess RF
    J Physiol; 2017 Feb; 595(4):1351-1363. PubMed ID: 27748961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.
    Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C
    J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MEG responses to the perception of global structure within glass patterns.
    Swettenham JB; Anderson SJ; Thai NJ
    PLoS One; 2010 Nov; 5(11):e13865. PubMed ID: 21079764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localizing evoked and induced responses to faces using magnetoencephalography.
    Perry G; Singh KD
    Eur J Neurosci; 2014 May; 39(9):1517-27. PubMed ID: 24617643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early ERP components differentially extract facial features: evidence for spatial frequency-and-contrast detectors.
    Nakashima T; Kaneko K; Goto Y; Abe T; Mitsudo T; Ogata K; Makinouchi A; Tobimatsu S
    Neurosci Res; 2008 Dec; 62(4):225-35. PubMed ID: 18809442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial frequency processing in scene-selective cortical regions.
    Kauffmann L; Ramanoël S; Guyader N; Chauvin A; Peyrin C
    Neuroimage; 2015 May; 112():86-95. PubMed ID: 25754068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of face spatial frequencies on cortical processing revealed by magnetoencephalography.
    Hsiao FJ; Hsieh JC; Lin YY; Chang Y
    Neurosci Lett; 2005 May 20-27; 380(1-2):54-9. PubMed ID: 15854750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural signature of spatial frequency-based information integration in scene perception.
    Mu T; Li S
    Exp Brain Res; 2013 Jun; 227(3):367-77. PubMed ID: 23604577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial attention modulates visual gamma oscillations across the human ventral stream.
    Magazzini L; Singh KD
    Neuroimage; 2018 Feb; 166():219-229. PubMed ID: 29104149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses.
    Giani AS; Ortiz E; Belardinelli P; Kleiner M; Preissl H; Noppeney U
    Neuroimage; 2012 Apr; 60(2):1478-89. PubMed ID: 22305992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of spatial frequency in category-level visual search of real-world scenes.
    Zhang Q; Li S
    Psych J; 2020 Feb; 9(1):44-55. PubMed ID: 31155857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast.
    Kauffmann L; Chauvin A; Guyader N; Peyrin C
    Vision Res; 2015 Feb; 107():49-57. PubMed ID: 25499838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.