BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 34563721)

  • 1. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels.
    Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM
    Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening.
    Yan T; Rao D; Chen Y; Wang Y; Zhang Q; Wu S
    Acta Biomater; 2022 Jan; 138():112-123. PubMed ID: 34749001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.
    Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS
    Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate.
    Zhang Y; Wang Z; Sun Q; Li Q; Li S; Li X
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation.
    Vorwald CE; Gonzalez-Fernandez T; Joshee S; Sikorski P; Leach JK
    Acta Biomater; 2020 May; 108():142-152. PubMed ID: 32173582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics.
    Tran KA; Kraus E; Clark AT; Bennett A; Pogoda K; Cheng X; Ce Bers A; Janmey PA; Galie PA
    ACS Appl Mater Interfaces; 2021 May; 13(18):20947-20959. PubMed ID: 33909398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix.
    Wisdom K; Chaudhuri O
    Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Laden Multiple-Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis.
    Ding A; Jeon O; Tang R; Lee YB; Lee SJ; Alsberg E
    Adv Sci (Weinh); 2021 May; 8(9):2004616. PubMed ID: 33977070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration.
    Yuan W; Wang H; Fang C; Yang Y; Xia X; Yang B; Lin Y; Li G; Bian L
    Mater Horiz; 2021 Jun; 8(6):1722-1734. PubMed ID: 34846502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics-Controlled Dynamic Cell Niches Guided Osteogenic Differentiation of Stem Cells via Preserved Cellular Mechanical Memory.
    Wei D; Liu A; Sun J; Chen S; Wu C; Zhu H; Chen Y; Luo H; Fan H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):260-274. PubMed ID: 31800206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition.
    Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK
    Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels.
    Hasturk O; Sahoo JK; Kaplan DL
    Polymer (Guildf); 2023 Jul; 281():. PubMed ID: 37483847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of cell laden hydrogels with temporally tunable stiffness in biomedical research.
    AhmadianKia N; Goli-Malekabadi Z; Pournaghmeh S
    J Biomater Appl; 2023 Aug; 38(2):179-193. PubMed ID: 37357779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments.
    Rosales AM; Vega SL; DelRio FW; Burdick JA; Anseth KS
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12132-12136. PubMed ID: 28799225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.