BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34563957)

  • 1. Epiphytic hydroid community as sentinels of seagrass condition and human impacts.
    Castellanos-Iglesias S; Siret-Martínez SL; Di Domenico M; Martínez-Daranas B; Haddad MA
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112939. PubMed ID: 34563957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic contamination as a driver of structural changes of hydroid's assemblages of the coral reefs near to Havana Harbour, Cuba.
    Castellanos-Iglesias S; Cabral AC; Martins CC; Di Domenico M; Rocha RM; Haddad MA
    Mar Pollut Bull; 2018 Aug; 133():568-577. PubMed ID: 30041351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of a large herbivore changes regulation of seagrass productivity in a naturally grazed Caribbean ecosystem.
    Gulick AG; Johnson RA; Pollock CG; Hillis-Starr Z; Bolten AB; Bjorndal KA
    Ecology; 2020 Dec; 101(12):e03180. PubMed ID: 32882749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A successful method to restore seagrass habitats in coastal areas affected by consecutive natural events.
    Ruiz-Diaz CP; Toledo-Hernández C; Sánchez-González JL; Mercado-Molina AE
    PeerJ; 2024; 12():e16700. PubMed ID: 38188168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hurricane Paloma's effects on seagrasses along Jardines de la Reina Archipelago, Cuba].
    Guimarais M; Zúñiga A; Pina F; Matos F
    Rev Biol Trop; 2013 Sep; 61(3):1425-32. PubMed ID: 24027933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drift macroalgal distribution in northern Gulf of Mexico seagrass meadows.
    Correia KM; Alford SB; Belgrad BA; Darnell KM; Darnell MZ; Furman BT; Hall MO; Hayes CT; Martin CW; McDonald AM; Smee DL
    PeerJ; 2022; 10():e13855. PubMed ID: 36032953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A matter of choice: Understanding the interactions between epiphytic foraminifera and their seagrass host Halophila stipulacea.
    Masawa J; Winters G; Kaminer M; Szitenberg A; Gruntman M; Ashckenazi-Polivoda S
    Mar Environ Res; 2024 Apr; 196():106437. PubMed ID: 38479296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and biochemical responses of tropical seagrasses (Family: Hydrocharitaceae) under colonization of the macroalgae
    Emmclan LSH; Zakaria MH; Ramaiya SD; Natrah I; Bujang JS
    PeerJ; 2022; 10():e12821. PubMed ID: 35111414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Benthic fauna associated to a Thalassia testudinum (Hydrocharitaceae) bed in Parque Nacional Morrocoy, Venezuela].
    Rodríguez C; Villamizar E
    Rev Biol Trop; 2000 Dec; 48 Suppl 1():243-9. PubMed ID: 15266814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of acoustical remote sensing techniques for ecosystem monitoring of a seagrass meadow.
    Ballard MS; Lee KM; Sagers JD; Venegas GR; McNeese AR; Wilson PS; Rahman AF
    J Acoust Soc Am; 2020 Mar; 147(3):2002. PubMed ID: 32237865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of anthropogenic pressures on the seagrass Halophila stipulacea and its associated macrozoobenthic communities in the northern Gulf of Aqaba.
    Nguyen HM; Andolina C; Vizzini S; Gambi MC; Winters G
    Mar Environ Res; 2023 Jul; 189():106073. PubMed ID: 37413952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural variation of potentially toxic epiphytic dinoflagellates on Thalassia testudinum from two coastal systems of Colombian Caribbean.
    Arbeláez M N; Mancera-Pineda JE; Reguera B
    Harmful Algae; 2020 Feb; 92():101738. PubMed ID: 32113597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Population of Lytechinus variegatus (Echinoidea: Toxopneustidae) and structural characteristics of seagrass of Thalassia testudinum in Mochima Bay, Venezuela)].
    Noriega N; Cróquer A; Pauls SM
    Rev Biol Trop; 2002 Mar; 50(1):49-56. PubMed ID: 12298266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds.
    Di Carlo G; Kenworthy WJ
    Oecologia; 2008 Nov; 158(2):285-98. PubMed ID: 18830634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs.
    Goss H; Jaskiel J; Rotjan R
    Mar Pollut Bull; 2018 Oct; 135():1085-1089. PubMed ID: 30301005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additions to the hydroids (Cnidaria, Hydrozoa) of the Bay of Fundy, northeastern North America, with a checklist of species reported from the region.
    Calder DR
    Zootaxa; 2017 Apr; 4256(1):1-86. PubMed ID: 28609939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreasing seagrass density negatively influences associated fauna.
    McCloskey RM; Unsworth RK
    PeerJ; 2015; 3():e1053. PubMed ID: 26137432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum.
    Enríquez S; Pantoja-Reyes NI
    Oecologia; 2005 Sep; 145(2):235-43. PubMed ID: 15942763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated response of St. Joseph Bay, Florida, seagrass meadows and their belowground carbon to anthropogenic and climate impacts.
    Lebrasse MC; Schaeffer BA; Zimmerman RC; Hill VJ; Coffer MM; Whitman PJ; Salls WB; Graybill DD; Osburn CL
    Mar Environ Res; 2022 Jul; 179():105694. PubMed ID: 35850077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.