These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34564046)

  • 1. Mechanochemically incorporating magnesium sulfate into antigorite to provide active nucleation sites for efficient precipitation of cadmium ions from weak acidic solution.
    Chen M; Zhang Q; Jiang L; Hu H; Wang C; Li Z
    J Hazard Mater; 2022 Feb; 424(Pt A):127272. PubMed ID: 34564046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient separation of Zn(Ⅱ) from Cd(Ⅱ) in sulfate solution by mechanochemically activated serpentine.
    Li Z; Huang P; Hu H; Zhang Q; Chen M
    Chemosphere; 2020 Nov; 258():127275. PubMed ID: 32535445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion exchange to immobilize Cd(II) at neutral pH into silicate matrix prepared by co-grinding kaolinite with calcium compounds.
    Zhao Y; Chen M; Zhang Q; Yuan W; Wu Y
    Chemosphere; 2022 Aug; 301():134677. PubMed ID: 35472614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced selective copper precipitation by mechanochemically activated benzene tricarboxylic acid.
    Shi Q; Yan S; Wang C; Zeng C; Hu H; Chen M; Chen M; Zhang Q
    Environ Technol; 2023 May; 44(12):1798-1807. PubMed ID: 34842054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cd(II) adsorption on earth-abundant serpentine in aqueous environment: Role of interfacial ion specificity.
    Wang Z; Tian H; Liu J; Wang J; Lu Q; Xie L
    Environ Pollut; 2023 Aug; 331(Pt 2):121845. PubMed ID: 37209895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties.
    Ivanova TK; Kremenetskaya IP; Marchevskaya VV; Slukovskaya MV; Drogobuzhskaya SV
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution.
    Yang L; Wen T; Wang L; Miki T; Bai H; Lu X; Yu H; Nagasaka T
    J Environ Manage; 2019 Feb; 231():41-48. PubMed ID: 30326337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals.
    Bahabadi FN; Farpoor MH; Mehrizi MH
    Water Sci Technol; 2017 Jan; 75(2):340-349. PubMed ID: 28112661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical remediation of the chlorinated compounds contaminated soil depending on the minerals inside-the most reasonable approach.
    Yao Z; He X; Wang Q; Wang C; Shi Q; Zhang Q
    Chemosphere; 2023 Feb; 313():137449. PubMed ID: 36464018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of Cd
    Zeng Q; Sun W; Zhong H; He Z
    J Environ Manage; 2022 Mar; 305():114288. PubMed ID: 34968939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Cd
    Chen X; Wang C; Chen M; Hu H; Huang J; Jiang T; Zhang Q
    J Environ Sci (China); 2025 Jan; 147():714-725. PubMed ID: 39003084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of fibrous antigorite from New Caledonia.
    Gazzano E; Petriglieri JR; Aldieri E; Fubini B; Laporte-Magoni C; Pavan C; Tomatis M; Turci F
    Environ Res; 2023 Aug; 230():115046. PubMed ID: 36525994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal activation of serpentine for adsorption of cadmium.
    Cao CY; Liang CH; Yin Y; Du LY
    J Hazard Mater; 2017 May; 329():222-229. PubMed ID: 28178637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II).
    Xiao J; Hu R; Chen G
    J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium modeling of cadmium biosorption from aqueous solution by compost.
    Ahmad I; Akhtar MJ; Jadoon IBK; Imran M; Imran M; Ali S
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5277-5284. PubMed ID: 28004370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation.
    Sheng M; Peng D; Luo S; Ni T; Luo H; Zhang R; Wen Y; Xu H
    Environ Pollut; 2022 Sep; 308():119585. PubMed ID: 35728693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains I: Characteristics of magnesium oxide materials for cadmium sorption.
    Okazaki M; Kimura SD; Kikuchi T; Igura M; Hattori T; Abe T
    J Hazard Mater; 2008 Jun; 154(1-3):287-93. PubMed ID: 18162302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of fungus-serpentine aggregation and its immobilization of lead(II) under acidic conditions.
    Yu C; Zhang L; Syed S; Li Y; Xu M; Lian B
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):2157-2169. PubMed ID: 33555363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.