These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34564100)

  • 1. Study on Data Partition for Delimitation of Masses in Mammography.
    Viegas L; Domingues I; Mendes M
    J Imaging; 2021 Sep; 7(9):. PubMed ID: 34564100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network.
    Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J
    PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning.
    Kim YJ; Kim KG
    Yonsei Med J; 2022 Jan; 63(Suppl):S63-S73. PubMed ID: 35040607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Convolutional Neural Networks for Breast Mass Segmentation and Diagnosis in Mammography.
    Li H; Chen D; Nailon WH; Davies ME; Laurenson DI
    IEEE Trans Med Imaging; 2022 Jan; 41(1):3-13. PubMed ID: 34351855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Neural Networks With Region-Based Pooling Structures for Mammographic Image Classification.
    Shu X; Zhang L; Wang Z; Lv Q; Yi Z
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2246-2255. PubMed ID: 31985411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass detection in mammograms by bilateral analysis using convolution neural network.
    Li Y; Zhang L; Chen H; Cheng L
    Comput Methods Programs Biomed; 2020 Oct; 195():105518. PubMed ID: 32480189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.
    Calderon-Ramirez S; Murillo-Hernandez D; Rojas-Salazar K; Elizondo D; Yang S; Moemeni A; Molina-Cabello M
    Med Biol Eng Comput; 2022 Apr; 60(4):1159-1175. PubMed ID: 35239108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning method for classifying mammographic breast density categories.
    Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S
    Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for mass detection in Full Field Digital Mammograms.
    Agarwal R; Díaz O; Yap MH; Lladó X; Martí R
    Comput Biol Med; 2020 Jun; 121():103774. PubMed ID: 32339095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
    Aly GH; Marey M; El-Sayed SA; Tolba MF
    Comput Methods Programs Biomed; 2021 Mar; 200():105823. PubMed ID: 33190942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network.
    Rahman H; Naik Bukht TF; Ahmad R; Almadhor A; Javed AR
    Comput Intell Neurosci; 2023; 2023():7717712. PubMed ID: 36909966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and Segmentation of Breast Masses Based on Multi-Layer Feature Fusion.
    An J; Yu H; Bai R; Li J; Wang Y; Cao R
    Methods; 2022 Jun; 202():54-61. PubMed ID: 33930573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for detection of iso-dense, obscure masses in mammographically dense breasts.
    Rangarajan K; Aggarwal P; Gupta DK; Dhanakshirur R; Baby A; Pal C; Gupta AK; Hari S; Banerjee S; Arora C
    Eur Radiol; 2023 Nov; 33(11):8112-8121. PubMed ID: 37209125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.