BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34564273)

  • 1. Precise Characterization of
    Lu W; Lan X; Zhang T; Sun H; Ma S; Xia Q
    Insects; 2021 Sep; 12(9):. PubMed ID: 34564273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined CRISPR toolkits reveal the domestication landscape and function of the ultra-long and highly repetitive silk genes.
    Lu W; Ma S; Sun L; Zhang T; Wang X; Feng M; Wang A; Shi R; Jia L; Xia Q
    Acta Biomater; 2023 Mar; 158():190-202. PubMed ID: 36603730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants.
    López-Girona E; Davy MW; Albert NW; Hilario E; Smart MEM; Kirk C; Thomson SJ; Chagné D
    Plant Methods; 2020; 16():121. PubMed ID: 32884578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Mediated Endogenous Activation of Fibroin Heavy Chain Gene Triggers Cellular Stress Responses in
    Hu W; Wang X; Ma S; Peng Z; Cao Y; Xia Q
    Insects; 2021 Jun; 12(6):. PubMed ID: 34199296
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Lu W; Zhang T; Zhang Q; Zhang N; Jia L; Ma S; Xia Q
    Insects; 2023 Feb; 14(3):. PubMed ID: 36975929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori.
    Kimoto M; Tsubota T; Uchino K; Sezutsu H; Takiya S
    Insect Biochem Mol Biol; 2015 Jan; 56():29-35. PubMed ID: 25449130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular nature of dominant naked pupa mutation reveals novel insights into silk production in Bombyx mori.
    Hu W; Lu W; Wei L; Zhang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jun; 109():52-62. PubMed ID: 30954682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.
    Ma S; Liu Y; Liu Y; Chang J; Zhang T; Wang X; Shi R; Lu W; Xia X; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2017 Apr; 83():13-20. PubMed ID: 28189747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of 5'-flanking regions of Bombyx mori fibroin heavy chain gene: identification of a novel transcription enhancing element with a homeodomain protein-binding motif.
    Shimizu K; Ogawa S; Hino R; Adachi T; Tomita M; Yoshizato K
    Insect Biochem Mol Biol; 2007 Jul; 37(7):713-25. PubMed ID: 17550827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal structure of the silk fibroin gene of Bombyx mori. I The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences.
    Gage LP; Manning RF
    J Biol Chem; 1980 Oct; 255(19):9444-50. PubMed ID: 6157693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly repetitive structure and its organization of the silk fibroin gene.
    Mita K; Ichimura S; James TC
    J Mol Evol; 1994 Jun; 38(6):583-92. PubMed ID: 7916056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of duplications of short motif sequences in the genomic evolution of Bombyx mori.
    Ichimura S; Mita K
    J Mol Evol; 1992 Aug; 35(2):123-30. PubMed ID: 1501252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in
    Yang Z; Edwards H; Xu P
    Metab Eng Commun; 2020 Jun; 10():e00112. PubMed ID: 31867213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster.
    Fiol A; Jurado-Ruiz F; López-Girona E; Aranzana MJ
    Plant Methods; 2022 Aug; 18(1):105. PubMed ID: 36030243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain.
    Kikuchi Y; Mori K; Suzuki S; Yamaguchi K; Mizuno S
    Gene; 1992 Jan; 110(2):151-8. PubMed ID: 1347033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to Whole Mitochondrial Genome Sequencing on the Oxford Nanopore MinION.
    Zascavage RR; Hall CL; Thorson K; Mahmoud M; Sedlazeck FJ; Planz JV
    Curr Protoc Hum Genet; 2019 Dec; 104(1):e94. PubMed ID: 31743587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Construction of Portable CRISPR-Cpf1-Mediated Genome Editing in
    Hao W; Suo F; Lin Q; Chen Q; Zhou L; Liu Z; Cui W; Zhou Z
    Front Bioeng Biotechnol; 2020; 8():524676. PubMed ID: 32984297
    [No Abstract]   [Full Text] [Related]  

  • 19. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida.
    Endo A; Masafumi M; Kaya H; Toki S
    Sci Rep; 2016 Dec; 6():38169. PubMed ID: 27905529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.