These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34564400)

  • 41. Sand smelt ability to cope and recover from ocean's elevated CO
    Silva CSE; Lemos MFL; Faria AM; Lopes AF; Mendes S; Gonçalves EJ; Novais SC
    Ecotoxicol Environ Saf; 2018 Jun; 154():302-310. PubMed ID: 29477920
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes.
    Ceballos-Osuna L; Carter HA; Miller NA; Stillman JH
    J Exp Biol; 2013 Apr; 216(Pt 8):1405-11. PubMed ID: 23536588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elevated pCO
    Wang Y; Hu M; Wu F; Storch D; Pörtner HO
    Front Physiol; 2018; 9():1164. PubMed ID: 30246790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming.
    Dworjanyn SA; Byrne M
    Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite.
    Franzova VA; MacLeod CD; Wang T; Harley CDG
    Int J Parasitol; 2019 Dec; 49(13-14):1015-1021. PubMed ID: 31655036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.
    Perry DM; Redman DH; Widman JC; Meseck S; King A; Pereira JJ
    Ecol Evol; 2015 Sep; 5(18):4187-96. PubMed ID: 26442471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. European Lobster Larval Development and Fitness Under a Temperature Gradient and Ocean Acidification.
    Leiva L; Tremblay N; Torres G; Boersma M; Krone R; Giménez L
    Front Physiol; 2022; 13():809929. PubMed ID: 35910579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW; Padilla-Gamiño JL; Hofmann GE
    Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Food web changes under ocean acidification promote herring larvae survival.
    Sswat M; Stiasny MH; Taucher J; Algueró-Muñiz M; Bach LT; Jutfelt F; Riebesell U; Clemmesen C
    Nat Ecol Evol; 2018 May; 2(5):836-840. PubMed ID: 29556079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate.
    Giménez L
    Ecology; 2010 May; 91(5):1401-13. PubMed ID: 20503872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temperature tolerance of different larval stages of the spider crab Hyas araneus exposed to elevated seawater PCO2.
    Schiffer M; Harms L; Lucassen M; Mark FC; Pörtner HO; Storch D
    Front Zool; 2014; 11():87. PubMed ID: 25717341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification.
    Passarelli MC; Cesar A; Riba I; DelValls TA
    Chemosphere; 2017 Oct; 184():224-234. PubMed ID: 28599151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.
    Young CS; Gobler CJ
    PLoS One; 2016; 11(5):e0155152. PubMed ID: 27176637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Metamorphosis of marine fish larvae and thyroid hormones].
    Roux N; Salis P; Laudet V
    Biol Aujourdhui; 2019; 213(1-2):27-33. PubMed ID: 31274100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819).
    Scanes E; Parker LM; O'Connor WA; Ross PM
    PLoS One; 2014; 9(4):e93649. PubMed ID: 24733125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diel and tidal pCO
    Cross EL; Murray CS; Baumann H
    Sci Rep; 2019 Dec; 9(1):18146. PubMed ID: 31796762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches.
    Byrne M
    Mar Environ Res; 2012 May; 76():3-15. PubMed ID: 22154473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum.
    Hu M; Tseng YC; Su YH; Lein E; Lee HG; Lee JR; Dupont S; Stumpp M
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 29021181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario.
    Rivest EB; Chen CS; Fan TY; Li HH; Hofmann GE
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.