These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34564470)

  • 1. Rejection Capacity of Nanofiltration Membranes for Nickel, Copper, Silver and Palladium at Various Oxidation States.
    Thabo B; Okoli BJ; Modise SJ; Nelana S
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrocatalytic modification of nanofiltration membranes with SrF
    Zheng H; Meng X; Wu J; Liu D; Huo S
    Chemosphere; 2023 Nov; 342():140152. PubMed ID: 37714470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus removal using nanofiltration membranes.
    Leo CP; Chai WK; Mohammad AW; Qi Y; Hoedley AF; Chai SP
    Water Sci Technol; 2011; 64(1):199-205. PubMed ID: 22053475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recovery of salt from coal gasification brine by nanofiltration membranes.
    Li K; Ma W; Han H; Xu C; Han Y; Wang D; Ma W; Zhu H
    J Environ Manage; 2018 Oct; 223():306-313. PubMed ID: 29935445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of operating parameters on spiramycin removal by nanofiltration membrane.
    Zhao C; Fan W; Wang T; Hou D; Luan Z
    Water Sci Technol; 2013; 68(7):1512-9. PubMed ID: 24135099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge.
    Mullett M; Fornarelli R; Ralph D
    Membranes (Basel); 2014 Mar; 4(2):163-80. PubMed ID: 24957170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
    Bera A; Trivedi JS; Kumar SB; Chandel AKS; Haldar S; Jewrajka SK
    J Hazard Mater; 2018 Feb; 343():86-97. PubMed ID: 28946135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Situ Modification of Nanofiltration Membranes Using Carbon Nanotubes for Water Treatment.
    Vargas-Figueroa C; Pino-Soto L; Beratto-Ramos A; Tapiero Y; Rivas BL; Berrio ME; Melendrez MF; Bórquez RM
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution.
    Ahmad AL; Tan LS; Abd Shukor SR
    J Hazard Mater; 2008 Jun; 154(1-3):633-8. PubMed ID: 18055106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of Electroplating Wastewater Using NF pH-Stable Membranes: Characterization and Application.
    Hegoburu I; Zedda KL; Velizarov S
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33291325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Binding Performance of Amyloid-Carbon Membranes toward Heavy Metal Ions.
    Peydayesh M; Bolisetty S; Mohammadi T; Mezzenga R
    Langmuir; 2019 Mar; 35(11):4161-4170. PubMed ID: 30811203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis.
    Acar S; Cengİz HY; ErgÜn A; Konyali E; DelİgÖz H
    Turk J Chem; 2020; 44(4):1134-1147. PubMed ID: 33488218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process.
    Yun T; Chung JW; Kwak SY
    J Environ Manage; 2018 Oct; 223():652-657. PubMed ID: 29975892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of pH on Atenolol/Nanofiltration Membranes Affinity.
    Soares EV; Giacobbo A; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-channel capillary NF membrane with PAMAM-MWCNT-embedded inner polyamide skin layer for heavy metals removal.
    Zhang HZ; Xu ZL; Sun JY
    RSC Adv; 2018 Aug; 8(51):29455-29463. PubMed ID: 35548001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal.
    Thong Z; Han G; Cui Y; Gao J; Chung TS; Chan SY; Wei S
    Environ Sci Technol; 2014 Dec; 48(23):13880-7. PubMed ID: 25369240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions.
    Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.