These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34564470)

  • 21. Ion implantation: effect on flux and rejection properties of NF membranes.
    Abitoye JO; Mukherjee JP; Jones K
    Environ Sci Technol; 2005 Sep; 39(17):6487-93. PubMed ID: 16190203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatible Fe
    Kamari S; Shahbazi A
    Chemosphere; 2020 Mar; 243():125282. PubMed ID: 31734593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic Dependence of Groundwater Cation Hydraulic and Concentration Features on Negatively Charged Thin Composite Nanofiltration Membrane Rejection and Permeation Behavior.
    Kukučka M; Kukučka Stojanović N
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of process water from spent emulsions generated in copper cable factory.
    Karakulski K; Morawski AW
    J Hazard Mater; 2011 Feb; 186(2-3):1667-71. PubMed ID: 21216093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors affecting the removal of bromate and bromide in water by nanofiltration.
    Lin D; Liang H; Li G
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24639-24649. PubMed ID: 31352601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery.
    Wang L; Rehman D; Sun PF; Deshmukh A; Zhang L; Han Q; Yang Z; Wang Z; Park HD; Lienhard JH; Tang CY
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16906-16915. PubMed ID: 33798334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Industrial Wastewater Treatment by Nanofiltration-a Case Study on the Anodizing Industry.
    Ali A; Nymann MC; Christensen ML; Quist-Jensen CA
    Membranes (Basel); 2020 Apr; 10(5):. PubMed ID: 32365735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Nanofiltration Membranes for Pure Lactic Acid Permeability.
    Cabrera-González M; Ahmed A; Maamo K; Salem M; Jordan C; Harasek M
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters.
    Cheng S; Oatley DL; Williams PM; Wright CJ
    Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Hollow Fiber Nanofiltration-Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies.
    Haddad M; Barbeau B
    Membranes (Basel); 2019 Jul; 9(7):. PubMed ID: 31331060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nanofiltration membrane prepared by PDA-C
    Bi Q; Zhang C; Liu J; Cheng Q; Xu S
    Water Sci Technol; 2020 Jan; 81(2):253-264. PubMed ID: 32333658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-charged self-assembled rGO/g-C
    Wang Y; Gong J; Li J; Sang F; Fang S; Zhou H; Tang L; Niu Q
    Sci Total Environ; 2023 Mar; 865():161234. PubMed ID: 36592914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.
    Kumar R; Pal P
    Water Environ Res; 2013 May; 85(5):447-55. PubMed ID: 23789574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Preparation of High-Performance and Stable MXene Nanofiltration Membranes with MXene Embedded in the Organic Phase.
    Xue Q; Zhang K
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach.
    Cheng S; Oatley DL; Williams PM; Wright CJ
    Adv Colloid Interface Sci; 2011 May; 164(1-2):12-20. PubMed ID: 21396619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of calcium ions on the removal of haloacetic acids from swimming pool water by nanofiltration: mechanisms and implications.
    Yang L; Zhou J; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Mar; 110():332-341. PubMed ID: 28063295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals.
    Marecka-Migacz A; Mitkowski PT; Nędzarek A; Różański J; Szaferski W
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32937943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Sulfadiazine by Polyamide Nanofiltration Membranes: Measurement, Modeling, and Mechanisms.
    Zhu H; Hu B; Yang F
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33540550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.