These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34564488)

  • 1. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of nanoparticle Pt-Ru fuel cell catalysts by heat treatment: a 195Pt NMR and electrochemical study.
    Babu PK; Kim HS; Kuk ST; Chung JH; Oldfield E; Wieckowski A; Smotkin ES
    J Phys Chem B; 2005 Sep; 109(36):17192-6. PubMed ID: 16853193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer.
    Wang T; Li LY; Chen LN; Sheng T; Chen L; Wang YC; Zhang P; Hong YH; Ye J; Lin WF; Zhang Q; Zhang P; Fu G; Tian N; Sun SG; Zhou ZY
    J Am Chem Soc; 2022 Jun; 144(21):9292-9301. PubMed ID: 35593455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes.
    Wang H; Abruña HD
    J Phys Chem Lett; 2015 May; 6(10):1899-906. PubMed ID: 26263266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Pt/Ru nanoparticle pair arrays with controlled separation and their electrocatalytic properties.
    Wickman B; Seidel YE; Jusys Z; Kasemo B; Behm RJ
    ACS Nano; 2011 Apr; 5(4):2547-58. PubMed ID: 21443165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pt Single Atoms on CrN Nanoparticles Deliver Outstanding Activity and CO Tolerance in the Hydrogen Oxidation Reaction.
    Yang Z; Chen C; Zhao Y; Wang Q; Zhao J; Waterhouse GIN; Qin Y; Shang L; Zhang T
    Adv Mater; 2023 Jan; 35(1):e2208799. PubMed ID: 36314386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO tolerance of Pt/FeO
    Liu L; Zhou F; Kodiyath R; Ueda S; Abe H; Wang D; Deng Y; Ye J
    Phys Chem Chem Phys; 2016 Oct; 18(42):29607-29615. PubMed ID: 27752660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Analysis for Demonstrating CO Tolerance of Catalysts in Polymer Electrolyte Membrane Fuel Cells.
    Min J; Jeffery AA; Kim Y; Jung N
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31597387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced alterations in the surface population of metal sites in bimetallic nanoparticles.
    Hwang BJ; Sarma LS; Wang GR; Chen CH; Liu DG; Sheu HS; Lee JF
    Chemistry; 2007; 13(21):6255-64. PubMed ID: 17458913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Near-Surface of PtRu
    Zhang J; Qu X; Shen L; Li G; Zhang T; Zheng J; Ji L; Yan W; Han Y; Cheng X; Jiang Y; Sun S
    Small; 2021 Feb; 17(6):e2006698. PubMed ID: 33470522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst.
    Tong Y; Kim HS; Babu PK; Waszczuk P; Wieckowski A; Oldfield E
    J Am Chem Soc; 2002 Jan; 124(3):468-73. PubMed ID: 11792218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes.
    Chetty R; Xia W; Kundu S; Bron M; Reinecke T; Schuhmann W; Muhler M
    Langmuir; 2009 Apr; 25(6):3853-60. PubMed ID: 19708258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.
    Sun Z; Wang X; Liu Z; Zhang H; Yu P; Mao L
    Langmuir; 2010 Jul; 26(14):12383-9. PubMed ID: 20486650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen.
    Joshi U; Malkhandi S; Ren Y; Tan TL; Chiam SY; Yeo BS
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6354-6360. PubMed ID: 29431422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependence of hydrogen oxidation reaction rates and CO-tolerance at carbon-supported Pt, Pt-Co, and Pt-Ru catalysts.
    Uchida H; Izumi K; Aoki K; Watanabe M
    Phys Chem Chem Phys; 2009 Mar; 11(11):1771-9. PubMed ID: 19290349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design of CO-tolerant Pt
    Liu Y; Duan Z; Henkelman G
    Phys Chem Chem Phys; 2019 Feb; 21(7):4046-4052. PubMed ID: 30714589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2.
    Perkas N; Teo J; Shen S; Wang Z; Highfield J; Zhong Z; Gedanken A
    Phys Chem Chem Phys; 2011 Sep; 13(34):15690-8. PubMed ID: 21799973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pt promotion and spill-over processes during deposition and desorption of upd-H(ad) and OH(ad) on Pt(x)Ru(1-x)/Ru(0001) surface alloys.
    Hoster HE; Janik MJ; Neurock M; Behm RJ
    Phys Chem Chem Phys; 2010 Sep; 12(35):10388-97. PubMed ID: 20596565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and catalytic properties of PtRu electrocatalysts prepared via the reduced RuO2 nanorods array.
    Huang SH; Susanti D; Tsai DS; Hsieh YC; Huang YS; Chung WH
    Langmuir; 2008 Mar; 24(6):2785-91. PubMed ID: 18237204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.
    Jackson A; Strickler A; Higgins D; Jaramillo TF
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29329264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.