These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34564506)

  • 1. The Effect of pH on Atenolol/Nanofiltration Membranes Affinity.
    Soares EV; Giacobbo A; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions.
    Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Design as a Tool for Optimizing and Predicting the Nanofiltration Performance by Treating Antibiotic-Containing Wastewater.
    de Souza DI; Giacobbo A; da Silva Fernandes E; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32707699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: Transport modeling and pore radius estimation.
    Taheri E; Hadi S; Amin MM; Ebrahimi A; Fatehizadeh A; Aminabhavi TM
    J Environ Manage; 2020 Oct; 271():111005. PubMed ID: 32778290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution.
    Ahmad AL; Tan LS; Abd Shukor SR
    J Hazard Mater; 2008 Jun; 154(1-3):633-8. PubMed ID: 18055106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of small trihalomethane precursors from aqueous solution by nanofiltration.
    Lin YL; Chiang PC; Chang EE
    J Hazard Mater; 2007 Jul; 146(1-2):20-9. PubMed ID: 17212977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rejection Capacity of Nanofiltration Membranes for Nickel, Copper, Silver and Palladium at Various Oxidation States.
    Thabo B; Okoli BJ; Modise SJ; Nelana S
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal using nanofiltration membranes.
    Leo CP; Chai WK; Mohammad AW; Qi Y; Hoedley AF; Chai SP
    Water Sci Technol; 2011; 64(1):199-205. PubMed ID: 22053475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atenolol removal by nanofiltration: a case-specific mass transfer correlation.
    Giacobbo A; Soares EV; Bernardes AM; Rosa MJ; de Pinho MN
    Water Sci Technol; 2020 Jan; 81(2):210-216. PubMed ID: 32333654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Hollow Fiber Nanofiltration-Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies.
    Haddad M; Barbeau B
    Membranes (Basel); 2019 Jul; 9(7):. PubMed ID: 31331060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Flux and Rejection Coefficients in the Removal of Emerging Pollutants Using a Nanofiltration Membrane.
    Hidalgo AM; Gómez M; Murcia MD; Gómez E; León G; Alfaro I
    Membranes (Basel); 2023 Nov; 13(11):. PubMed ID: 37999354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Situ Modification of Nanofiltration Membranes Using Carbon Nanotubes for Water Treatment.
    Vargas-Figueroa C; Pino-Soto L; Beratto-Ramos A; Tapiero Y; Rivas BL; Berrio ME; Melendrez MF; Bórquez RM
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the removal of bromate and bromide in water by nanofiltration.
    Lin D; Liang H; Li G
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24639-24649. PubMed ID: 31352601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Sulfadiazine by Polyamide Nanofiltration Membranes: Measurement, Modeling, and Mechanisms.
    Zhu H; Hu B; Yang F
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33540550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of pharmaceuticals and personal care products (PPCPs) and environmental estrogens (EEs) from water using positively charged hollow fiber nanofiltration membrane.
    Wei X; Zhang Q; Cao S; Xu X; Chen Y; Liu L; Yang R; Chen J; Lv B
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8486-8497. PubMed ID: 33067789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The negative rejection of H+ in NF of carbonate solution and its influences on membrane performance.
    Zhu A; Long F; Wang X; Zhu W; Ma J
    Chemosphere; 2007 Apr; 67(8):1558-65. PubMed ID: 17250866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.