BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34564647)

  • 1. A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail
    Abalde S; Dutertre S; Zardoya R
    Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predatory and Defensive Strategies in Cone Snails.
    Ratibou Z; Inguimbert N; Dutertre S
    Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of Conopeptides and Conoenzymes from the Venom Duct of the Marine Cone Snail
    Rajaian Pushpabai R; Wilson Alphonse CR; Mani R; Arun Apte D; Franklin JB
    Mar Drugs; 2021 Apr; 19(4):. PubMed ID: 33916793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Venomics Reveals a Non-Compartmentalised Venom Gland in the Early Diverged Vermivorous
    Prashanth JR; Dutertre S; Rai SK; Lewis RJ
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach.
    Violette A; Biass D; Dutertre S; Koua D; Piquemal D; Pierrat F; Stöcklin R; Favreau P
    J Proteomics; 2012 Sep; 75(17):5215-25. PubMed ID: 22705119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail,
    Jin AH; Dutertre S; Dutt M; Lavergne V; Jones A; Lewis RJ; Alewood PF
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30893765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom.
    Jin AH; Vetter I; Himaya SW; Alewood PF; Lewis RJ; Dutertre S
    Proteomics; 2015 Dec; 15(23-24):4030-40. PubMed ID: 26506909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Venomics of
    Himaya SWA; Arkhipov A; Yum WY; Lewis RJ
    Mar Drugs; 2022 Mar; 20(3):. PubMed ID: 35323508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.
    Himaya SW; Jin AH; Dutertre S; Giacomotto J; Mohialdeen H; Vetter I; Alewood PF; Lewis RJ
    J Proteome Res; 2015 Oct; 14(10):4372-81. PubMed ID: 26322961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus.
    Himaya SWA; Jin AH; Hamilton B; Rai SK; Alewood P; Lewis RJ
    Sci Rep; 2021 Jun; 11(1):13282. PubMed ID: 34168165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of defensive ecological interactions in the evolution of conotoxins.
    Prashanth JR; Dutertre S; Jin AH; Lavergne V; Hamilton B; Cardoso FC; Griffin J; Venter DJ; Alewood PF; Lewis RJ
    Mol Ecol; 2016 Jan; 25(2):598-615. PubMed ID: 26614983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Venomics of the Cryptic Cone Snail Species
    Pardos-Blas JR; Tenorio MJ; Galindo JCG; Zardoya R
    Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals.
    Himaya SWA; Marí F; Lewis RJ
    Sci Rep; 2018 Jan; 8(1):330. PubMed ID: 29321522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.
    Terrat Y; Biass D; Dutertre S; Favreau P; Remm M; Stöcklin R; Piquemal D; Ducancel F
    Toxicon; 2012 Jan; 59(1):34-46. PubMed ID: 22079299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary breadth is positively correlated with venom complexity in cone snails.
    Phuong MA; Mahardika GN; Alfaro ME
    BMC Genomics; 2016 May; 17():401. PubMed ID: 27229931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.
    Dutertre S; Jin AH; Kaas Q; Jones A; Alewood PF; Lewis RJ
    Mol Cell Proteomics; 2013 Feb; 12(2):312-29. PubMed ID: 23152539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails.
    Gorson J; Ramrattan G; Verdes A; Wright EM; Kantor Y; Rajaram Srinivasan R; Musunuri R; Packer D; Albano G; Qiu WG; Holford M
    Genome Biol Evol; 2015 May; 7(6):1761-78. PubMed ID: 26025559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Profiling Reveals Extraordinary Diversity of Venom Peptides in Unexplored Predatory Gastropods of the Genus Clavus.
    Lu A; Watkins M; Li Q; Robinson SD; Concepcion GP; Yandell M; Weng Z; Olivera BM; Safavi-Hemami H; Fedosov AE
    Genome Biol Evol; 2020 May; 12(5):684-700. PubMed ID: 32333764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails.
    Dutertre S; Jin AH; Vetter I; Hamilton B; Sunagar K; Lavergne V; Dutertre V; Fry BG; Antunes A; Venter DJ; Alewood PF; Lewis RJ
    Nat Commun; 2014 Mar; 5():3521. PubMed ID: 24662800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacology of predatory and defensive venom peptides in cone snails.
    Prashanth JR; Dutertre S; Lewis RJ
    Mol Biosyst; 2017 Nov; 13(12):2453-2465. PubMed ID: 29090697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.