These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34564692)
1. Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices. Lopez-Cruz M; Beyene Y; Gowda M; Crossa J; Pérez-Rodríguez P; de Los Campos G Heredity (Edinb); 2021 Nov; 127(5):423-432. PubMed ID: 34564692 [TBL] [Abstract][Full Text] [Related]
2. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415 [TBL] [Abstract][Full Text] [Related]
3. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970 [TBL] [Abstract][Full Text] [Related]
4. Sparse kernel models provide optimization of training set design for genomic prediction in multiyear wheat breeding data. Lopez-Cruz M; Dreisigacker S; Crespo-Herrera L; Bentley AR; Singh R; Poland J; Shrestha S; Huerta-Espino J; Govindan V; Juliana P; Mondal S; Pérez-Rodríguez P; Crossa J Plant Genome; 2022 Dec; 15(4):e20254. PubMed ID: 36043341 [TBL] [Abstract][Full Text] [Related]
5. Optimal breeding-value prediction using a sparse selection index. Lopez-Cruz M; de Los Campos G Genetics; 2021 May; 218(1):. PubMed ID: 33748861 [TBL] [Abstract][Full Text] [Related]
6. Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize. Gevartosky R; Carvalho HF; Costa-Neto G; Montesinos-López OA; Crossa J; Fritsche-Neto R BMC Plant Biol; 2023 Jan; 23(1):10. PubMed ID: 36604618 [TBL] [Abstract][Full Text] [Related]
7. Using markers with large effect in genetic and genomic predictions. Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367 [TBL] [Abstract][Full Text] [Related]
8. Calibration and validation of predicted genomic breeding values in an advanced cycle maize population. Auinger HJ; Lehermeier C; Gianola D; Mayer M; Melchinger AE; da Silva S; Knaak C; Ouzunova M; Schön CC Theor Appl Genet; 2021 Sep; 134(9):3069-3081. PubMed ID: 34117908 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium. Schopp P; Müller D; Technow F; Melchinger AE Genetics; 2017 Jan; 205(1):441-454. PubMed ID: 28049710 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction in maize breeding populations with genotyping-by-sequencing. Crossa J; Beyene Y; Kassa S; Pérez P; Hickey JM; Chen C; de los Campos G; Burgueño J; Windhausen VS; Buckler E; Jannink JL; Lopez Cruz MA; Babu R G3 (Bethesda); 2013 Nov; 3(11):1903-26. PubMed ID: 24022750 [TBL] [Abstract][Full Text] [Related]
11. Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials. Cuevas J; Montesinos-López O; Juliana P; Guzmán C; Pérez-Rodríguez P; González-Bucio J; Burgueño J; Montesinos-López A; Crossa J G3 (Bethesda); 2019 Sep; 9(9):2913-2924. PubMed ID: 31289023 [TBL] [Abstract][Full Text] [Related]
12. Genomic prediction models for traits differing in heritability for soybean, rice, and maize. Kaler AS; Purcell LC; Beissinger T; Gillman JD BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296 [TBL] [Abstract][Full Text] [Related]
14. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Lehermeier C; Krämer N; Bauer E; Bauland C; Camisan C; Campo L; Flament P; Melchinger AE; Menz M; Meyer N; Moreau L; Moreno-González J; Ouzunova M; Pausch H; Ranc N; Schipprack W; Schönleben M; Walter H; Charcosset A; Schön CC Genetics; 2014 Sep; 198(1):3-16. PubMed ID: 25236445 [TBL] [Abstract][Full Text] [Related]
15. Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. Technow F; Bürger A; Melchinger AE G3 (Bethesda); 2013 Feb; 3(2):197-203. PubMed ID: 23390596 [TBL] [Abstract][Full Text] [Related]
16. Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel. Rio S; Mary-Huard T; Moreau L; Charcosset A Theor Appl Genet; 2019 Jan; 132(1):81-96. PubMed ID: 30288553 [TBL] [Abstract][Full Text] [Related]
17. Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing. Faville MJ; Ganesh S; Cao M; Jahufer MZZ; Bilton TP; Easton HS; Ryan DL; Trethewey JAK; Rolston MP; Griffiths AG; Moraga R; Flay C; Schmidt J; Tan R; Barrett BA Theor Appl Genet; 2018 Mar; 131(3):703-720. PubMed ID: 29264625 [TBL] [Abstract][Full Text] [Related]
18. Accounting for epistasis improves genomic prediction of phenotypes with univariate and bivariate models across environments. Vojgani E; Pook T; Martini JWR; Hölker AC; Mayer M; Schön CC; Simianer H Theor Appl Genet; 2021 Sep; 134(9):2913-2930. PubMed ID: 34115154 [TBL] [Abstract][Full Text] [Related]
19. Genetic architecture of maize kernel row number and whole genome prediction. Liu L; Du Y; Huo D; Wang M; Shen X; Yue B; Qiu F; Zheng Y; Yan J; Zhang Z Theor Appl Genet; 2015 Nov; 128(11):2243-54. PubMed ID: 26188589 [TBL] [Abstract][Full Text] [Related]
20. Genomic prediction based on data from three layer lines: a comparison between linear methods. Calus MP; Huang H; Vereijken A; Visscher J; Ten Napel J; Windig JJ Genet Sel Evol; 2014 Oct; 46(1):57. PubMed ID: 25927219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]