These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1360 related articles for article (PubMed ID: 34565338)
1. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338 [TBL] [Abstract][Full Text] [Related]
2. Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: A systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Maicas G; Kroon HM; Seow W; Carneiro G; Moore JW; Sammour T Artif Intell Med; 2021 Mar; 113():102022. PubMed ID: 33685585 [TBL] [Abstract][Full Text] [Related]
3. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Abbaspour E; Karimzadhagh S; Monsef A; Joukar F; Mansour-Ghanaei F; Hassanipour S Int J Surg; 2024 Jun; 110(6):3795-3813. PubMed ID: 38935817 [TBL] [Abstract][Full Text] [Related]
4. Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Castellana R; Fanni SC; Roncella C; Romei C; Natrella M; Neri E Eur J Radiol; 2024 Jul; 176():111510. PubMed ID: 38781919 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis. Zheng X; He B; Hu Y; Ren M; Chen Z; Zhang Z; Ma J; Ouyang L; Chu H; Gao H; He W; Liu T; Li G Front Public Health; 2022; 10():938113. PubMed ID: 35923964 [TBL] [Abstract][Full Text] [Related]
6. Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis. Ma D; Zhou T; Chen J; Chen J BMC Med Imaging; 2024 Jun; 24(1):144. PubMed ID: 38867143 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Wang C; Yu P; Zhang H; Han X; Song Z; Zheng G; Wang G; Zheng H; Mao N; Song X Eur Radiol; 2023 Oct; 33(10):6828-6840. PubMed ID: 37178202 [TBL] [Abstract][Full Text] [Related]
8. [High definition MRI rectal lymph node aided diagnostic system based on deep neural network]. Zhou YP; Li S; Zhang XX; Zhang ZD; Gao YX; Ding L; Lu Y Zhonghua Wai Ke Za Zhi; 2019 Feb; 57(2):108-113. PubMed ID: 30704213 [No Abstract] [Full Text] [Related]
9. Diagnostic accuracy of endoscopic ultrasound, computed tomography, magnetic resonance imaging, and endorectal ultrasonography for detecting lymph node involvement in patients with rectal cancer: A protocol for an overview of systematic reviews. Wang X; Gao Y; Li J; Wu J; Wang B; Ma X; Tian J; Shen M; Wang J Medicine (Baltimore); 2018 Oct; 97(43):e12899. PubMed ID: 30412090 [TBL] [Abstract][Full Text] [Related]
10. Radiomics diagnostic performance in predicting lymph node metastasis of papillary thyroid carcinoma: A systematic review and meta-analysis. HajiEsmailPoor Z; Kargar Z; Tabnak P Eur J Radiol; 2023 Nov; 168():111129. PubMed ID: 37820522 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis. Hoshino N; Murakami K; Hida K; Sakamoto T; Sakai Y Int J Clin Oncol; 2019 Jan; 24(1):46-52. PubMed ID: 30259217 [TBL] [Abstract][Full Text] [Related]
12. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training. Lee JH; Ha EJ; Kim D; Jung YJ; Heo S; Jang YH; An SH; Lee K Eur Radiol; 2020 Jun; 30(6):3066-3072. PubMed ID: 32065285 [TBL] [Abstract][Full Text] [Related]
13. Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis. Wu T; Gao C; Lou X; Wu J; Xu M; Wu L BMC Pulm Med; 2024 May; 24(1):246. PubMed ID: 38762472 [TBL] [Abstract][Full Text] [Related]
14. Application of artificial intelligence in ultrasound imaging for predicting lymph node metastasis in breast cancer: A meta-analysis. Wang M; Liu Z; Ma L Clin Imaging; 2024 Feb; 106():110048. PubMed ID: 38065024 [TBL] [Abstract][Full Text] [Related]
15. Prediction of cervical lymph node metastasis in differentiated thyroid cancer based on radiomics models. Mu J; Cao Y; Zhong X; Diao W; Jia Z Br J Radiol; 2024 Feb; 97(1155):526-534. PubMed ID: 38366237 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic value of a radiomics model based on CT and MRI for prediction of lateral lymph node metastasis of rectal cancer. Yang H; Jiang P; Dong L; Li P; Sun Y; Zhu S Updates Surg; 2023 Dec; 75(8):2225-2234. PubMed ID: 37556079 [TBL] [Abstract][Full Text] [Related]
17. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer. Song JH; Hong Y; Kim ER; Kim SH; Sohn I J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259 [TBL] [Abstract][Full Text] [Related]
18. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Chen Z; Yu Y; Liu S; Du W; Hu L; Wang C; Li J; Liu J; Zhang W; Peng X Clin Oral Investig; 2023 Dec; 28(1):39. PubMed ID: 38151672 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Bian Y; Zheng Z; Fang X; Jiang H; Zhu M; Yu J; Zhao H; Zhang L; Yao J; Lu L; Lu J; Shao C Radiology; 2023 Jan; 306(1):160-169. PubMed ID: 36066369 [TBL] [Abstract][Full Text] [Related]