BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34565547)

  • 1. Heterogeneous material mapping methods for patient-specific finite element models of pelvic trabecular bone: A convergence study.
    Babazadeh Naseri A; Dunbar NJ; Baines AJ; Akin JE; Higgs Iii CF; Fregly BJ
    Med Eng Phys; 2021 Oct; 96():1-12. PubMed ID: 34565547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra.
    Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2011 Jul; 133(7):071001. PubMed ID: 21823740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QCT-FE modeling of the proximal tibia: Effect of mapping strategy on convergence time and model accuracy.
    Ashjaee N; Kalajahi SMH; Johnston JD
    Med Eng Phys; 2021 Feb; 88():41-46. PubMed ID: 33485512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction.
    Sabet FA; Jin O; Koric S; Jasiuk I
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2941. PubMed ID: 29168345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.
    Pakdel A; Fialkov J; Whyne CM
    J Biomech; 2016 Jun; 49(9):1454-1460. PubMed ID: 27033728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone.
    Alsayednoor J; Metcalf L; Rochester J; Dall'Ara E; McCloskey E; Lacroix D
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1715-1730. PubMed ID: 29987700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics.
    Väänänen SP; Grassi L; Venäläinen MS; Matikka H; Zheng Y; Jurvelin JS; Isaksson H
    Med Eng Phys; 2019 Aug; 70():19-28. PubMed ID: 31280927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture.
    Zaharie DT; Phillips ATM
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.