BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34565547)

  • 21. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions.
    Hammond MA; Wallace JM; Allen MR; Siegmund T
    Biomech Model Mechanobiol; 2018 Apr; 17(2):605-614. PubMed ID: 29139053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution.
    Bevill G; Keaveny TM
    Bone; 2009 Apr; 44(4):579-84. PubMed ID: 19135184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems.
    Marcián P; Borák L; Zikmund T; Horáčková L; Kaiser J; Joukal M; Wolff J
    J Mech Behav Biomed Mater; 2021 May; 117():104393. PubMed ID: 33647729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques.
    Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P
    J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis.
    Klintström E; Klintström B; Moreno R; Brismar TB; Pahr DH; Smedby Ö
    PLoS One; 2016; 11(8):e0161101. PubMed ID: 27513664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assigning trabecular bone material properties in finite element models simulating the pelvis before and after the development of peri-prosthetic osteolytic lesions.
    Grace TM; Solomon LB; Atkins GJ; Thewlis D; Taylor M
    J Mech Behav Biomed Mater; 2022 Sep; 133():105311. PubMed ID: 35716527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
    Pahr DH; Zysset PK
    Curr Osteoporos Rep; 2016 Dec; 14(6):374-385. PubMed ID: 27714581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.
    Yeni YN; Christopherson GT; Dong XN; Kim DG; Fyhrie DP
    J Biomech Eng; 2005 Feb; 127(1):1-8. PubMed ID: 15868782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.
    Chen G; Wu FY; Liu ZC; Yang K; Cui F
    Med Eng Phys; 2015 Aug; 37(8):808-12. PubMed ID: 26054803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Material model of pelvic bone based on modal analysis: a study on the composite bone.
    Henyš P; Čapek L
    Biomech Model Mechanobiol; 2017 Feb; 16(1):363-373. PubMed ID: 27561650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation of bone heterogeneity in subject-specific finite element models for knee.
    Au AG; Liggins AB; Raso VJ; Carey J; Amirfazli A
    Comput Methods Programs Biomed; 2010 Aug; 99(2):154-71. PubMed ID: 20022400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.