These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34565549)
41. Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data. Burkhart K; Grindle D; Bouxsein ML; Anderson DE J Biomech; 2020 Nov; 112():110044. PubMed ID: 32977297 [TBL] [Abstract][Full Text] [Related]
42. [In vivo measurement of three-dimensional motion of the upper cervical spine using CT three-dimensional reconstruction]. Zhai X; Kang J; Chen X; Dong J; Qiu XW; Ding XA; Liu J; He XJ Zhongguo Gu Shang; 2019 Jul; 32(7):658-665. PubMed ID: 31382726 [TBL] [Abstract][Full Text] [Related]
43. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600 [TBL] [Abstract][Full Text] [Related]
44. Agreement between Azure Kinect and Marker-Based Motion Analysis during Functional Movements: A Feasibility Study. Jo S; Song S; Kim J; Song C Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560187 [TBL] [Abstract][Full Text] [Related]
45. Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment. Lafayette TBG; Kunst VHL; Melo PVS; Guedes PO; Teixeira JMXN; Vasconcelos CR; Teichrieb V; da Gama AEF Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616603 [TBL] [Abstract][Full Text] [Related]
46. Normal functional range of motion of the lumbar spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869 [TBL] [Abstract][Full Text] [Related]
47. Lumbofemoral rhythm during hip flexion in young adults and children. Tully EA; Wagh P; Galea MP Spine (Phila Pa 1976); 2002 Oct; 27(20):E432-40. PubMed ID: 12394914 [TBL] [Abstract][Full Text] [Related]
48. Comparison of 2 methods of measuring spine angular kinematics during dynamic flexion movements: skin-mounted markers compared with markers affixed to rigid bodies. Howarth SJ J Manipulative Physiol Ther; 2014; 37(9):688-95. PubMed ID: 25455835 [TBL] [Abstract][Full Text] [Related]
49. Comparing inertial measurement units and marker-based biomechanical models during dynamic rotation of the torso. Brice SM; Phillips EJ; Millett EL; Hunter A; Philippa B Eur J Sport Sci; 2020 Jul; 20(6):767-775. PubMed ID: 31512552 [TBL] [Abstract][Full Text] [Related]
50. Does manual therapy affect functional and biomechanical outcomes of a sit-to-stand task in a population with low back pain? A preliminary analysis. Carpino G; Tran S; Currie S; Enebo B; Davidson BS; Howarth SJ Chiropr Man Therap; 2020; 28(1):5. PubMed ID: 31998472 [TBL] [Abstract][Full Text] [Related]
51. Measurement of segmental lumbar spine flexion and extension using ultrasound imaging. Chleboun GS; Amway MJ; Hill JG; Root KJ; Murray HC; Sergeev AV J Orthop Sports Phys Ther; 2012 Oct; 42(10):880-5. PubMed ID: 22814284 [TBL] [Abstract][Full Text] [Related]
52. Reliability and measurement error of sagittal spinal motion parameters in 220 patients with chronic low back pain using a three-dimensional measurement device. Mieritz RM; Bronfort G; Jakobsen MD; Aagaard P; Hartvigsen J Spine J; 2014 Sep; 14(9):1835-43. PubMed ID: 24216400 [TBL] [Abstract][Full Text] [Related]
53. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
54. Spine Kinematics During Prone Extension in People With and Without Low Back Pain and Among Classification-Specific Low Back Pain Subgroups. Mazzone B; Wood R; Gombatto S J Orthop Sports Phys Ther; 2016 Jul; 46(7):571-9. PubMed ID: 27170528 [TBL] [Abstract][Full Text] [Related]
55. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system. Bae M; Lee S; Kim N Comput Methods Programs Biomed; 2018 Jul; 160():25-32. PubMed ID: 29728243 [TBL] [Abstract][Full Text] [Related]
56. Validation of the Leap Motion Controller using markered motion capture technology. Smeragliuolo AH; Hill NJ; Disla L; Putrino D J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160 [TBL] [Abstract][Full Text] [Related]
57. The Spineangel: Examining the validity and reliability of a novel clinical device for monitoring trunk motion. Intolo P; Carman AB; Milosavljevic S; Abbott JH; Baxter GD Man Ther; 2010 Apr; 15(2):160-6. PubMed ID: 19945335 [TBL] [Abstract][Full Text] [Related]
58. Auto-tracking system for human lumbar motion analysis. Sui F; Zhang D; Lam SC; Zhao L; Wang D; Bi Z; Hu Y J Xray Sci Technol; 2011; 19(2):205-18. PubMed ID: 21606583 [TBL] [Abstract][Full Text] [Related]
59. Range of motion and lordosis of the lumbar spine: reliability of measurement and normative values. Ng JK; Kippers V; Richardson CA; Parnianpour M Spine (Phila Pa 1976); 2001 Jan; 26(1):53-60. PubMed ID: 11148646 [TBL] [Abstract][Full Text] [Related]
60. Pilot Validation Study of Inertial Measurement Units and Markerless Methods for 3D Neck and Trunk Kinematics during a Simulated Surgery Task. Zhang C; Greve C; Verkerke GJ; Roossien CC; Houdijk H; Hijmans JM Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366040 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]