These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34566008)

  • 1. The Phase-Shifting Limit Cycles of the van der Pol Equation.
    Melvin PJ
    J Res Natl Bur Stand (1977); 1978; 83(6):593-601. PubMed ID: 34566008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Van der Pol model in two-delay differential equation representation.
    Elfouly MA; Sohaly MA
    Sci Rep; 2022 Feb; 12(1):2925. PubMed ID: 35190638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart muscle contraction oscillation.
    Karreman G; Prood C
    Int J Biomed Comput; 1995 Jan; 38(1):49-53. PubMed ID: 7705914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact Coefficients of the Limit Cycle in Van der Pol's Equation.
    Deprit A; Schmidt DS
    J Res Natl Bur Stand (1977); 1979; 84(4):293-297. PubMed ID: 34880520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-based analysis of frequency entrainment described by van der Pol and phase-locked loop equations.
    Susuki Y; Yokoi Y; Hikihara T
    Chaos; 2007 Jun; 17(2):023108. PubMed ID: 17614662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of limit cycles for strongly nonlinear oscillators.
    He JH
    Phys Rev Lett; 2003 May; 90(17):174301. PubMed ID: 12786073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Van der Pol and the history of relaxation oscillations: toward the emergence of a concept.
    Ginoux JM; Letellier C
    Chaos; 2012 Jun; 22(2):023120. PubMed ID: 22757527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational principle for limit cycles of the Rayleigh-van der Pol equation.
    Benguria RD; Depassier MC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):4889-93. PubMed ID: 11969440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcations of synchronized responses in synaptically coupled Bonhöffer-van der Pol neurons.
    Tsumoto K; Yoshinaga T; Kawakami H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036230. PubMed ID: 11909235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise.
    Belousov R; Berger F; Hudspeth AJ
    Phys Rev E; 2020 Sep; 102(3-1):032209. PubMed ID: 33075951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of advectively coupled Van der Pol equations chain.
    Kashchenko SA
    Chaos; 2021 Mar; 31(3):033147. PubMed ID: 33810712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Fokker-Planck equation for birhythmic modified van der Pol oscillator.
    Yamapi R; Filatrella G; Aziz-Alaoui MA; Cerdeira HA
    Chaos; 2012 Dec; 22(4):043114. PubMed ID: 23278049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ring generator of two- and three-frequency quasiperiodic self-oscillations based on the van der Pol oscillator.
    Astakhov SV; Astakhov OV; Fadeeva NS; Astakhov VV
    Chaos; 2021 Aug; 31(8):083108. PubMed ID: 34470230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification.
    Uzunov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066603. PubMed ID: 21230747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
    Mall S; Chakraverty S
    Neural Comput; 2016 Aug; 28(8):1574-98. PubMed ID: 27348738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical system of a time-delayed ϕ
    Moatimid GM; Amer TS
    Sci Rep; 2023 Jul; 13(1):11942. PubMed ID: 37488150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-mode oscillations from a constrained extended Bonhoeffer-van der Pol oscillator with a diode.
    Inaba N; Kousaka T; Tsubone T; Okazaki H; Ito H
    Chaos; 2021 Jul; 31(7):073133. PubMed ID: 34340338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning limit cycles with a noise: Survival and collapse.
    Sarkar P; Ray DS
    Phys Rev E; 2024 Mar; 109(3-1):034209. PubMed ID: 38632777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of oscillations in a model of weakly coupled two Bonhoeffer-van der Pol equations.
    Asai Y; Nomura T; Sato S
    Biosystems; 2000; 58(1-3):239-47. PubMed ID: 11164652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.