These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34566056)

  • 41. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow.
    Renaud J; Sarfehnia A; Bancheri J; Seuntjens J
    Med Phys; 2020 Mar; 47(3):1291-1304. PubMed ID: 31834640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracting W
    Tessier F; Cojocaru CD; Ross CK
    Med Phys; 2018 Jan; 45(1):370-381. PubMed ID: 29131343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a portable graphite calorimeter for radiation dosimetry.
    Sakama M; Kanai T; Fukumura A
    Igaku Butsuri; 2008; 28(1):1-14. PubMed ID: 21976250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.
    Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A
    Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams.
    Almond PR; Biggs PJ; Coursey BM; Hanson WF; Huq MS; Nath R; Rogers DW
    Med Phys; 1999 Sep; 26(9):1847-70. PubMed ID: 10505874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams.
    Huq MS; Andreo P; Song H
    Phys Med Biol; 2001 Nov; 46(11):2985-3006. PubMed ID: 11720359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. First-stage validation of a portable imageable MR-compatible water calorimeter.
    D'Souza M; Nusrat H; Renaud J; Peterson G; Sarfehnia A
    Med Phys; 2020 Oct; 47(10):5312-5323. PubMed ID: 32786081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Absorbed Dose Water Calorimeter: Theory, Design, and Performance.
    Domen SR
    J Res Natl Bur Stand (1977); 1982; 87(3):211-235. PubMed ID: 34566082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Practical dosimetry procedure of air kerma for kilovoltage X-ray imaging in radiation oncology using a 0.6-cc cylindrical ionization chamber with a cobalt absorbed dose-to-water calibration coefficient.
    Tachibana H; Takahashi R; Kogure T; Nishiyama S; Kurosawa T
    Radiol Phys Technol; 2022 Sep; 15(3):264-270. PubMed ID: 35829894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reference dosimetry in clinical high-energy electron beams: comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols.
    Saiful Huq M; Song H; Andreo P; Houser CJ
    Med Phys; 2001 Oct; 28(10):2077-87. PubMed ID: 11695769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.
    Butler DJ; Lye JE; Wright TE; Crossley D; Sharpe PH; Stevenson AW; Livingstone J; Crosbie JC
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):943-950. PubMed ID: 27585452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam.
    Lourenço A; Thomas R; Homer M; Bouchard H; Rossomme S; Renaud J; Kanai T; Royle G; Palmans H
    Phys Med Biol; 2017 Apr; 62(7):N134-N146. PubMed ID: 28211796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reference dose determination in 60Co and high-energy radiotherapy photon beams by using Farmer-type cylindrical ionization chambers - an experimental investigation.
    Swanpalmer J
    Biomed Phys Eng Express; 2020 May; 6(4):045003. PubMed ID: 33444264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiation absorbed dose for cobalt-60 gamma source in phantoms for different materials.
    Akram M; Ullah Zulkafal HM; Altaf S; Iqbal K; Altaf SM; Khan MA; Buzdar SA
    J Pak Med Assoc; 2018 Feb; 68(2):264-267. PubMed ID: 29479104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of absorbed dose and kerma in a neutron field from measurements with a tissue-equivalent ionisation chamber.
    Mijnheer BJ; Williams JR
    Phys Med Biol; 1981 Jan; 26(1):57-69. PubMed ID: 7243871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correction factors for Farmer-type chambers for absorbed dose determination in 60Co and 192Ir brachytherapy dosimetry.
    Tölli H; Johansson KA
    Phys Med Biol; 1998 Nov; 43(11):3171-81. PubMed ID: 9832009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Measurement of peak correction factor of Farmer chamber for calibration of flattening filter free (FFF) clinical photon beams].
    Kontra G; Major T; Polgár C
    Magy Onkol; 2015 Jun; 59(2):119-23. PubMed ID: 26035159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams.
    Palmans H; Thomas R; Simon M; Duane S; Kacperek A; DuSautoy A; Verhaegen F
    Phys Med Biol; 2004 Aug; 49(16):3737-49. PubMed ID: 15446802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (N(D,w))].
    Fukumura A; Mizuno H; Fukahori M; Sakata S
    Igaku Butsuri; 2012; 32(4):182-8. PubMed ID: 24568023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calibration in water versus calibration in air for cobalt-60 gamma rays.
    Grant WH; Cundiff JH; Gagnon WF; Hanson WF; Shalek RJ
    Med Phys; 1977; 4(1):68-9. PubMed ID: 840192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.