BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34566902)

  • 1. Biochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom.
    Graff van Creveld S; Ben-Dor S; Mizrachi A; Alcolombri U; Hopes A; Mock T; Rosenwasser S; Vardi A
    Front Microbiol; 2021; 12():688199. PubMed ID: 34566902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Metacaspase Activity in Phytoplankton.
    Spungin D; Berman-Frank I
    Bio Protoc; 2019 Aug; 9(16):e3341. PubMed ID: 33654845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes.
    Zhang C; Gong P; Wei R; Li S; Zhang X; Yu Y; Wang Y
    Gene; 2013 Oct; 528(2):267-76. PubMed ID: 23845786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis.
    He R; Drury GE; Rotari VI; Gordon A; Willer M; Farzaneh T; Woltering EJ; Gallois P
    J Biol Chem; 2008 Jan; 283(2):774-83. PubMed ID: 17998208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana.
    Bidle KD; Bender SJ
    Eukaryot Cell; 2008 Feb; 7(2):223-36. PubMed ID: 18039944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases.
    Choi CJ; Berges JA
    Cell Death Dis; 2013 Feb; 4(2):e490. PubMed ID: 23412383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caspases in plants: metacaspase gene family in plant stress responses.
    Fagundes D; Bohn B; Cabreira C; Leipelt F; Dias N; Bodanese-Zanettini MH; Cagliari A
    Funct Integr Genomics; 2015 Nov; 15(6):639-49. PubMed ID: 26277721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach.
    Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M
    Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity and Expression of Bacterial Metacaspases in an Aquatic Ecosystem.
    Asplund-Samuelsson J; Sundh J; Dupont CL; Allen AE; McCrow JP; Celepli NA; Bergman B; Ininbergs K; Ekman M
    Front Microbiol; 2016; 7():1043. PubMed ID: 27458440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising the Gene Expression, Enzymatic Activity and Subcellular Localisation of
    Sobri ZM; Gallois P
    Biology (Basel); 2023 Aug; 12(9):. PubMed ID: 37759555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity.
    González IJ; Desponds C; Schaff C; Mottram JC; Fasel N
    Int J Parasitol; 2007 Feb; 37(2):161-72. PubMed ID: 17107676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and Bioinformatic Characterization of Type II Metacaspase Protein (TaeMCAII) from Wheat.
    Piszczek E; Dudkiewicz M; Mielecki M
    Plant Mol Biol Report; 2012; 30(6):1338-1347. PubMed ID: 24415839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metacaspase involvement in programmed cell death of the marine cyanobacterium Trichodesmium.
    Spungin D; Bidle KD; Berman-Frank I
    Environ Microbiol; 2019 Feb; 21(2):667-681. PubMed ID: 30585394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and structural diversity of metacaspases.
    Klemenčič M; Funk C
    J Exp Bot; 2019 Apr; 70(7):2039-2047. PubMed ID: 30921456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of barley MCs (metacaspases) and their possible roles in boron-induced programmed cell death.
    Bostancioglu SM; Tombuloglu G; Tombuloglu H
    Mol Biol Rep; 2018 Jun; 45(3):211-225. PubMed ID: 29399733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes.
    Vardi A; Bidle KD; Kwityn C; Hirsh DJ; Thompson SM; Callow JA; Falkowski P; Bowler C
    Curr Biol; 2008 Jun; 18(12):895-9. PubMed ID: 18538570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi.
    Liu J; Cai W; Fang X; Wang X; Li G
    Arch Microbiol; 2018 Apr; 200(3):413-422. PubMed ID: 29184974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type III metacaspases: calcium-dependent activity proposes new function for the p10 domain.
    Klemenčič M; Funk C
    New Phytol; 2018 May; 218(3):1179-1191. PubMed ID: 28643870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metacaspase of Saccharomyces cerevisiae (ScMCA-Ia) presents different catalytic cysteine in a processed and non-processed form.
    Dalzoto LAM; Trujilho MNR; Santos TDR; Costa JPMS; Duarte ACM; Judice WAS; Marcondes MF; Machado MFM
    Biochem Biophys Res Commun; 2023 Dec; 687():149185. PubMed ID: 37951047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization, molecular evolution and expression profiling of the metacaspases in potato (
    Dubey N; Trivedi M; Varsani S; Vyas V; Farsodia M; Singh SK
    Heliyon; 2019 Feb; 5(2):e01162. PubMed ID: 30793051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.