BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34566926)

  • 1. Aerobic Respiration and Its Regulation in the Metal Reducer
    Bertling K; Banerjee A; Saffarini D
    Front Microbiol; 2021; 12():723835. PubMed ID: 34566926
    [No Abstract]   [Full Text] [Related]  

  • 2. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.
    Le Laz S; Kpebe A; Bauzan M; Lignon S; Rousset M; Brugna M
    PLoS One; 2014; 9(1):e86343. PubMed ID: 24466040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis.
    Gao H; Wang X; Yang ZK; Chen J; Liang Y; Chen H; Palzkill T; Zhou J
    PLoS One; 2010 Dec; 5(12):e15295. PubMed ID: 21203399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase.
    Le Laz S; Kpebe A; Bauzan M; Lignon S; Rousset M; Brugna M
    Sci Rep; 2016 Jan; 6():19726. PubMed ID: 26815910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene.
    Al-Sheboul S; Saffarini D
    Anaerobe; 2011 Dec; 17(6):501-5. PubMed ID: 21726654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments.
    Zhou G; Yin J; Chen H; Hua Y; Sun L; Gao H
    ISME J; 2013 Sep; 7(9):1752-63. PubMed ID: 23575370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis.
    Saffarini DA; Schultz R; Beliaev A
    J Bacteriol; 2003 Jun; 185(12):3668-71. PubMed ID: 12775705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 9. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis.
    Yin J; Meng Q; Fu H; Gao H
    Sci Rep; 2016 Apr; 6():24449. PubMed ID: 27076065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of
    Kasai T; Suzuki Y; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209
    [No Abstract]   [Full Text] [Related]  

  • 11. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ArcB1, a homolog of Escherichia coli ArcB, regulates dimethyl sulfoxide reduction in Shewanella oneidensis MR-1.
    Shroff NP; Charania MA; Saffarini DA
    J Bacteriol; 2010 Jun; 192(12):3227-30. PubMed ID: 20400540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis.
    Fu H; Chen H; Wang J; Zhou G; Zhang H; Zhang L; Gao H
    Environ Microbiol; 2013 Aug; 15(8):2198-212. PubMed ID: 23414111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic regulation by an atypical Arc system in Shewanella oneidensis.
    Gralnick JA; Brown CT; Newman DK
    Mol Microbiol; 2005 Jun; 56(5):1347-57. PubMed ID: 15882425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation between Iron and Heme Biosyntheses Is Largely Accountable for Respiration Defects of
    Fu H; Liu L; Dong Z; Guo S; Gao H
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodate Reduction by
    Shin HD; Toporek Y; Mok JK; Maekawa R; Lee BD; Howard MH; DiChristina TJ
    Front Microbiol; 2022; 13():852942. PubMed ID: 35495678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pellicle development of Shewanella oneidensis is an aerotaxis-piloted and energy-dependent process.
    Wu G; Jin F
    Biochem Biophys Res Commun; 2019 Oct; 519(1):127-133. PubMed ID: 31481239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.
    Pinchuk GE; Geydebrekht OV; Hill EA; Reed JL; Konopka AE; Beliaev AS; Fredrickson JK
    Appl Environ Microbiol; 2011 Dec; 77(23):8234-40. PubMed ID: 21965410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.