These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 34567044)

  • 1. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype?
    Joga MR; Mogilicherla K; Smagghe G; Roy A
    Front Plant Sci; 2021; 12():733608. PubMed ID: 34567044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms, Applications, and Challenges of Insect RNA Interference.
    Zhu KY; Palli SR
    Annu Rev Entomol; 2020 Jan; 65():293-311. PubMed ID: 31610134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for enhancing the efficiency of RNA interference in insects.
    Silver K; Cooper AM; Zhu KY
    Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities.
    Singewar K; Fladung M
    Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges.
    Nitnavare RB; Bhattacharya J; Singh S; Kour A; Hawkesford MJ; Arora N
    Front Plant Sci; 2021; 12():673576. PubMed ID: 34733295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Variable Dietary RNAi Sensitivity Among Coleoptera.
    Willow J; Veromann E
    Front Plant Sci; 2021; 12():790816. PubMed ID: 34950174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects.
    Yoon JS; Mogilicherla K; Gurusamy D; Chen X; Chereddy SCRR; Palli SR
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8334-8339. PubMed ID: 30061410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far.
    Joga MR; Zotti MJ; Smagghe G; Christiaens O
    Front Physiol; 2016; 7():553. PubMed ID: 27909411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interference in insects: the link between antiviral defense and pest control.
    Niu J; Chen R; Wang JJ
    Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiont-Mediated RNA Interference (SMR): Using Symbiotic Bacteria as Vectors for Delivering RNAi to Insects.
    Dyson P; Figueiredo M; Andongma AA; Whitten MMA
    Methods Mol Biol; 2022; 2360():295-306. PubMed ID: 34495522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer.
    Leelesh RS; Rieske LK
    Insects; 2020 Jul; 11(7):. PubMed ID: 32674291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Strategies for exogenous RNA delivery in RNAi-mediated pest management].
    Gong L; Ying S; Zhang Y; Wang J; Sun G
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):459-471. PubMed ID: 36847083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis.
    Cooper AM; Song H; Yu Z; Biondi M; Bai J; Shi X; Ren Z; Weerasekara SM; Hua DH; Silver K; Zhang J; Zhu KY
    Pest Manag Sci; 2021 Feb; 77(2):635-645. PubMed ID: 33002336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges.
    Christiaens O; Whyard S; VĂ©lez AM; Smagghe G
    Front Plant Sci; 2020; 11():451. PubMed ID: 32373146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management.
    Yan S; Ren BY; Shen J
    Insect Sci; 2021 Feb; 28(1):21-34. PubMed ID: 32478473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control.
    Adeyinka OS; Riaz S; Toufiq N; Yousaf I; Bhatti MU; Batcho A; Olajide AA; Nasir IA; Tabassum B
    Mol Biol Rep; 2020 Aug; 47(8):6309-6319. PubMed ID: 32696345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.