These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34567088)

  • 21. SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction.
    Zhang YF; Wang X; Kaushik AC; Chu Y; Shan X; Zhao MZ; Xu Q; Wei DQ
    Front Chem; 2019; 7():895. PubMed ID: 31998687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LM-DTI: a tool of predicting drug-target interactions using the node2vec and network path score methods.
    Li J; Wang Y; Li Z; Lin H; Wu B
    Front Genet; 2023; 14():1181592. PubMed ID: 37229202
    [No Abstract]   [Full Text] [Related]  

  • 23. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC.
    Jia J; Li X; Qiu W; Xiao X; Chou KC
    J Theor Biol; 2019 Jan; 460():195-203. PubMed ID: 30312687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.
    Qiu W; Lv Z; Hong Y; Jia J; Xiao X
    Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456
    [No Abstract]   [Full Text] [Related]  

  • 25. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    J Theor Biol; 2015 Jul; 377():47-56. PubMed ID: 25908206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset.
    Chou KC; Cheng X; Xiao X
    Med Chem; 2019; 15(5):472-485. PubMed ID: 30569871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MDSVDNV: predicting microbe-drug associations by singular value decomposition and Node2vec.
    Tan H; Zhang Z; Liu X; Chen Y; Yang Z; Wang L
    Front Microbiol; 2023; 14():1303585. PubMed ID: 38260900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iRNA-2methyl: Identify RNA 2'-O-methylation Sites by Incorporating Sequence-Coupled Effects into General PseKNC and Ensemble Classifier.
    Qiu WR; Jiang SY; Sun BQ; Xiao X; Cheng X; Chou KC
    Med Chem; 2017; 13(8):734-743. PubMed ID: 28641529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention-based neural networks.
    Tsukiyama S; Kurata H
    Comput Struct Biotechnol J; 2022; 20():5564-5573. PubMed ID: 36249566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. iSS-PC: Identifying Splicing Sites via Physical-Chemical Properties Using Deep Sparse Auto-Encoder.
    Xu ZC; Wang P; Qiu WR; Xiao X
    Sci Rep; 2017 Aug; 7(1):8222. PubMed ID: 28811565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC.
    Cheng X; Xiao X; Chou KC
    Genomics; 2017 Oct; ():. PubMed ID: 28989035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix.
    Xiao X; Wang P; Chou KC
    PLoS One; 2012; 7(2):e30869. PubMed ID: 22363503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    Oncotarget; 2016 Jun; 7(23):34558-70. PubMed ID: 27153555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and validation of a recurrent Clostridium difficile risk-prediction model.
    Zilberberg MD; Reske K; Olsen M; Yan Y; Dubberke ER
    J Hosp Med; 2014 Jul; 9(7):418-23. PubMed ID: 24700708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.
    Wang P; Xiao X; Chou KC
    PLoS One; 2011; 6(8):e23505. PubMed ID: 21858146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset.
    Chou KC; Cheng X; Xiao X
    Genomics; 2019 Dec; 111(6):1274-1282. PubMed ID: 30179658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC.
    Jia J; Zhang L; Liu Z; Xiao X; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3133-3141. PubMed ID: 27354696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iDNA-Prot: identification of DNA binding proteins using random forest with grey model.
    Lin WZ; Fang JA; Xiao X; Chou KC
    PLoS One; 2011; 6(9):e24756. PubMed ID: 21935457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.