These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34567541)

  • 1. Selective enhancement of upconversion luminescence for enhanced ratiometric sensing.
    Bae K; Xu B; Das A; Wolenski C; Rappeport E; Park W
    RSC Adv; 2021; 11(30):18205-18212. PubMed ID: 34567541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.
    Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.
    Zhang W; Li J; Lei H; Li B
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42935-42942. PubMed ID: 29144120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.
    Li Y; Chen C; Liu F; Liu J
    Mikrochim Acta; 2022 Feb; 189(3):109. PubMed ID: 35175435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Chiral Metasurface-Induced Upconverted Circularly Polarized Luminescence from Achiral Upconversion Nanoparticles.
    He H; Cen M; Wang J; Xu Y; Liu J; Cai W; Kong D; Li K; Luo D; Cao T; Liu YJ
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53981-53989. PubMed ID: 36378812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced red upconversion emission, magnetoluminescent behavior, and bioimaging application of NaSc0.75Er0.02Yb0.18Gd0.05F4@AuNPs nanoparticles.
    Rai M; Singh SK; Singh AK; Prasad R; Koch B; Mishra K; Rai SB
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15339-50. PubMed ID: 26121066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers.
    Feng AL; You ML; Tian L; Singamaneni S; Liu M; Duan Z; Lu TJ; Xu F; Lin M
    Sci Rep; 2015 Jan; 5():7779. PubMed ID: 25586238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors.
    Sun C; Gradzielski M
    Adv Colloid Interface Sci; 2022 Feb; 300():102579. PubMed ID: 34924169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protected excitation-energy reservoir for efficient upconversion luminescence.
    Huang K; Liu H; Kraft M; Shikha S; Zheng X; Ågren H; Würth C; Resch-Genger U; Zhang Y
    Nanoscale; 2017 Dec; 10(1):250-259. PubMed ID: 29210408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cupredoxin engineered upconversion nanoparticles for ratiometric luminescence sensing of Cu
    Liu C; Yu Y; Chen D; Zhao J; Yu Y; Li L; Lu Y
    Nanoscale Adv; 2019 Jul; 1(7):2580-2585. PubMed ID: 32195453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared-Plasmonic Energy Upconversion in a Nonmetallic Heterostructure for Efficient H
    Zhang Z; Liu Y; Fang Y; Cao B; Huang J; Liu K; Dong B
    Adv Sci (Weinh); 2018 Sep; 5(9):1800748. PubMed ID: 30250807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-10 nm BaLaF
    Rao L; Lu W; Zeng T; Yi Z; Wang H; Liu H; Zeng S
    J Mater Chem B; 2014 Oct; 2(38):6527-6533. PubMed ID: 32261814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence.
    Deng K; Xu L; Guo X; Wu X; Liu Y; Zhu Z; Li Q; Zhan Q; Li C; Quan Z
    Small; 2020 Sep; 16(38):e2002066. PubMed ID: 32815270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combating Concentration Quenching in Upconversion Nanoparticles.
    Chen B; Wang F
    Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+),Er(3+) nanoparticles: Maxwell versus Förster.
    Lu D; Cho SK; Ahn S; Brun L; Summers CJ; Park W
    ACS Nano; 2014 Aug; 8(8):7780-92. PubMed ID: 25003209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Mode nanoprobes for heart tissue imaging.
    Li Y; Li Y
    Talanta; 2022 Oct; 248():123641. PubMed ID: 35671546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic tuning of upconversion luminescence in Au/NaGdF
    Dai G; Zhong Z; Wu X; Zhan S; Hu S; Hu P; Hu J; Wu S; Han J; Liu Y
    Nanotechnology; 2017 Apr; 28(15):155702. PubMed ID: 28223551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure.
    Li X; Zhang F; Zhao D
    Chem Soc Rev; 2015 Mar; 44(6):1346-78. PubMed ID: 25052250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation.
    Wiesholler LM; Frenzel F; Grauel B; Würth C; Resch-Genger U; Hirsch T
    Nanoscale; 2019 Jul; 11(28):13440-13449. PubMed ID: 31287476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CaGdF
    Xie X; Wang W; Chen H; Yang R; Wu H; Gan D; Li B; Kong X; Li Q; Chang Y
    RSC Adv; 2023 Mar; 13(13):8535-8539. PubMed ID: 36926301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.