These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34567616)

  • 1. Engineering microscale systems for fully autonomous intracellular neural interfaces.
    Kumar SS; Baker MS; Okandan M; Muthuswamy J
    Microsyst Nanoeng; 2020; 6():1. PubMed ID: 34567616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic microactuators for precise positioning of neural microelectrodes.
    Muthuswamy J; Okandan M; Jain T; Gilletti A
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1748-55. PubMed ID: 16235660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents.
    Muthuswamy J; Okandan M; Gilletti A; Baker MS; Jain T
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1470-7. PubMed ID: 16119243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Neural Recordings Using MEMS Based Movable Microelectrodes in the Brain.
    Jackson N; Sridharan A; Anand S; Baker M; Okandan M; Muthuswamy J
    Front Neuroeng; 2010; 3():10. PubMed ID: 20617188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NanoTouch: intracellular recording using transmembrane conductive nanoparticles.
    Saito ML
    J Neurophysiol; 2019 Nov; 122(5):2016-2026. PubMed ID: 31483705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue.
    Wong YT; Ahnood A; Maturana MI; Kentler W; Ganesan K; Grayden DB; Meffin H; Prawer S; Ibbotson MR; Burkitt AN
    Front Bioeng Biotechnol; 2018; 6():85. PubMed ID: 29988378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible microelectrode array for interfacing with the surface of neural ganglia.
    Sperry ZJ; Na K; Parizi SS; Chiel HJ; Seymour J; Yoon E; Bruns TM
    J Neural Eng; 2018 Jun; 15(3):036027. PubMed ID: 29521279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings.
    Staley KJ; Otis TS; Mody I
    J Neurophysiol; 1992 May; 67(5):1346-58. PubMed ID: 1597717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption.
    Lara-Castro M; Herrera-Amaya A; Escarola-Rosas MA; Vázquez-Toledo M; López-Huerta F; Aguilera-Cortés LA; Herrera-May AL
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated online positioning system and simulation environment for multi-electrodes in extracellular recordings.
    Franke F; Natora M; Meier P; Hagen E; Pettersen KH; Linden H; Einevoll GT; Obermayer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():593-7. PubMed ID: 21096103
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.