These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34567616)

  • 21. Improving suction technology for nerve activity recording.
    Domacena J; Ruan J; Ye H
    J Neurosci Methods; 2022 Jan; 365():109401. PubMed ID: 34728256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.
    Ojovan SM; Rabieh N; Shmoel N; Erez H; Maydan E; Cohen A; Spira ME
    Sci Rep; 2015 Sep; 5():14100. PubMed ID: 26365404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
    Stoy WA; Kolb I; Holst GL; Liew Y; Pala A; Yang B; Boyden ES; Stanley GB; Forest CR
    J Neurophysiol; 2017 Aug; 118(2):1141-1150. PubMed ID: 28592685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular recording of rat neuron activity at the medial preoptic area of the hypothalamus using triangular wave microelectrode oscillation.
    Watanabe T
    Nihon Juigaku Zasshi; 1990 Dec; 52(6):1147-53. PubMed ID: 2287122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications.
    Anand S; Sutanto J; Baker MS; Okandan M; Muthuswamy J
    J Microelectromech Syst; 2012 Jul; 21(5):1172-1186. PubMed ID: 24431926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expert-like performance of an autonomous spike tracking algorithm in isolating and maintaining single units in the macaque cortex.
    Chakrabarti S; Hebert P; Wolf MT; Campos M; Burdick JW; Gail A
    J Neurosci Methods; 2012 Mar; 205(1):72-85. PubMed ID: 22227443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    J Neurophysiol; 2010 Jul; 104(1):559-68. PubMed ID: 20427620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA- Toward "IN-CELL" Recordings from Vertebrate Neurons.
    Fendyur A; Mazurski N; Shappir J; Spira ME
    Front Neuroeng; 2011; 4():14. PubMed ID: 22163219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opportunities and dilemmas of
    Wu Y; Chen H; Guo L
    RSC Adv; 2019 Dec; 10(1):187-200. PubMed ID: 35492533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capabilities of a penetrating microelectrode array for recording single units in dorsal root ganglia of the cat.
    Aoyagi Y; Stein RB; Branner A; Pearson KG; Normann RA
    J Neurosci Methods; 2003 Sep; 128(1-2):9-20. PubMed ID: 12948544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
    Insanally M; Trumpis M; Wang C; Chiang CH; Woods V; Palopoli-Trojani K; Bossi S; Froemke RC; Viventi J
    J Neural Eng; 2016 Apr; 13(2):026030-26030. PubMed ID: 26975462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid clinical-research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons. Technical note.
    Howard MA; Volkov IO; Granner MA; Damasio HM; Ollendieck MC; Bakken HE
    J Neurosurg; 1996 Jan; 84(1):129-32. PubMed ID: 8613821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster.
    Zhong C; Zhang Y; He W; Wei P; Lu Y; Zhu Y; Liu L; Wang L
    J Neurosci Methods; 2014 Jan; 222():218-29. PubMed ID: 24286699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.