These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34567633)

  • 21. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage.
    Rahmanian OD; DeVoe DL
    Microfluid Nanofluidics; 2015 May; 18(5-6):1045-1053. PubMed ID: 25972774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical isolation and characteristics of permanent magnet-actuated valves for PDMS microfluidics.
    Chen CY; Chen CH; Tu TY; Lin CM; Wo AM
    Lab Chip; 2011 Feb; 11(4):733-7. PubMed ID: 21132206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optically addressable single-use microfluidic valves by laser printer lithography.
    Garcia-Cordero JL; Kurzbuch D; Benito-Lopez F; Diamond D; Lee LP; Ricco AJ
    Lab Chip; 2010 Oct; 10(20):2680-7. PubMed ID: 20740236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermally-actuated microfluidic membrane valve for point-of-care applications.
    Sesen M; Rowlands CJ
    Microsyst Nanoeng; 2021; 7():48. PubMed ID: 34567761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps.
    Bußmann A; Thalhofer T; Hoffmann S; Daum L; Surendran N; Hayden O; Hubbuch J; Richter M
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bubble pump: scalable strategy for in-plane liquid routing.
    Oskooei A; Günther A
    Lab Chip; 2015 Jul; 15(13):2842-53. PubMed ID: 26016773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators.
    Zhang Y; Cole T; Yun G; Li Y; Zhao Q; Lu H; Zheng J; Li W; Tang SY
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design.
    Newsham EI; Phillips EA; Ma H; Chang MM; Wereley ST; Linnes JC
    Lab Chip; 2022 Jul; 22(14):2741-2752. PubMed ID: 35762978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device.
    Wang A; Koh D; Schneider P; Breloff E; Oh KW
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review on pneumatic operations in centrifugal microfluidics.
    Hess JF; Zehnle S; Juelg P; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2019 Nov; 19(22):3745-3770. PubMed ID: 31596297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.