BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34567656)

  • 1. Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice.
    Horváth ÁC; Borbély S; Boros ÖC; Komáromi L; Koppa P; Barthó P; Fekete Z
    Microsyst Nanoeng; 2020; 6():44. PubMed ID: 34567656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex.
    Horváth ÁC; Borbély S; Mihók F; Fürjes P; Barthó P; Fekete Z
    Sci Rep; 2022 Jul; 12(1):11434. PubMed ID: 35794160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and thermal modeling of an optrode microdevice for infrared neural stimulation.
    Boros ÖC; Horváth ÁC; Beleznai S; Sepsi Ö; Lenk S; Fekete Z; Koppa P
    Appl Opt; 2018 Aug; 57(24):6952-6957. PubMed ID: 30129582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe.
    Fekete Z; Csernai M; Kocsis K; Horváth ÁC; Pongrácz A; Barthó P
    J Neural Eng; 2017 Jun; 14(3):034001. PubMed ID: 28198704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of an optrode microdevice for infrared neural stimulation.
    Boros ÖC; Horváth ÁC; Beleznai S; Sepsi Ö; Csősz D; Fekete Z; Koppa P
    Appl Opt; 2019 May; 58(14):3870-3876. PubMed ID: 31158202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation.
    Mohanty A; Li Q; Tadayon MA; Roberts SP; Bhatt GR; Shim E; Ji X; Cardenas J; Miller SA; Kepecs A; Lipson M
    Nat Biomed Eng; 2020 Feb; 4(2):223-231. PubMed ID: 32051578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics.
    Segev E; Reimer J; Moreaux LC; Fowler TM; Chi D; Sacher WD; Lo M; Deisseroth K; Tolias AS; Faraon A; Roukes ML
    Neurophotonics; 2017 Jan; 4(1):011002. PubMed ID: 27990451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanofabricated optoelectronic probe for manipulating and recording neural dynamics.
    Li B; Lee K; Masmanidis SC; Li M
    J Neural Eng; 2018 Aug; 15(4):046008. PubMed ID: 29629879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings.
    Guo Y; Werner CF; Canales A; Yu L; Jia X; Anikeeva P; Yoshinobu T
    PLoS One; 2020; 15(1):e0228076. PubMed ID: 31978197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient assembly of multi-color fiberless optoelectrodes with on-board light sources for neural stimulation and recording.
    Kampasi K; Seymour J; Stark E; Buzsaki G; Wise KD; Yoon E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4479-4482. PubMed ID: 28269273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers.
    Alemzadeh-Ansari MJ; Ansari MA; Zakeri M; Haghjoo M
    Lasers Med Sci; 2019 Oct; 34(8):1555-1566. PubMed ID: 30887233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Fabrication of Implantable Neural Probes with Monolithically Integrated Light-Emitting Diodes for Optogenetic Applications.
    Sung HK; Lee HK; Wang C; Kim NY
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2582-584. PubMed ID: 29658691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantable photonic neural probes for light-sheet fluorescence brain imaging.
    Sacher WD; Chen FD; Moradi-Chameh H; Luo X; Fomenko A; Shah PT; Lordello T; Liu X; Almog IF; Straguzzi JN; Fowler TM; Jung Y; Hu T; Jeong J; Lozano AM; Lo PG; Valiante TA; Moreaux LC; Poon JKS; Roukes ML
    Neurophotonics; 2021 Apr; 8(2):025003. PubMed ID: 33898636
    [No Abstract]   [Full Text] [Related]  

  • 17. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical stimulation of primary motor cortex with 980nm infrared neural stimulation.
    Wang MQ; Xia QL; Wu XY; Wang X; Zheng XL; Hou WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6143-6. PubMed ID: 25571399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal Functional Analysis Platform: 2. Development of Si Opto-Electro Multifunctional Neural Probe with Multiple Optical Waveguides and Embedded Optical Fiber for Optogenetics.
    Tanaka T; Katayama N; Sakamoto K; Osanai M; Mushiake H
    Adv Exp Med Biol; 2021; 1293():481-491. PubMed ID: 33398835
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.