These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34567712)

  • 1. Clandestine nanoelectromechanical tags for identification and authentication.
    Rassay S; Ramezani M; Shomaji S; Bhunia S; Tabrizian R
    Microsyst Nanoeng; 2020; 6():103. PubMed ID: 34567712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions.
    Arppe-Tabbara R; Tabbara M; Sørensen TJ
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6475-6482. PubMed ID: 30648843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Method of Secure Authentication Based on Electromagnetic Signatures of Chipless RFID Tags and Machine Learning Approaches.
    Nastasiu D; Scripcaru R; Digulescu A; Ioana C; De Amorim R; Barbot N; Siragusa R; Perret E; Popescu F
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale diffusive memristor crossbars as physical unclonable functions.
    Zhang R; Jiang H; Wang ZR; Lin P; Zhuo Y; Holcomb D; Zhang DH; Yang JJ; Xia Q
    Nanoscale; 2018 Feb; 10(6):2721-2726. PubMed ID: 29419836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Systems Identification through Rayleigh Backscattering.
    Nadimi Goki P; Mulugeta TT; Caldelli R; Potì L
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocatalyst-Enabled Physically Unclonable Functions as Smart Anticounterfeiting Tags with AI-Aided Smartphone Authentication.
    Moglianetti M; Pedone D; Morerio P; Scarsi A; Donati P; Bustreo M; Del Bue A; Pompa PP
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25898-25906. PubMed ID: 35612325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser fabrication and evaluation of holographic intrinsic physical unclonable functions.
    Anastasiou A; Zacharaki EI; Tsakas A; Moustakas K; Alexandropoulos D
    Sci Rep; 2022 Feb; 12(1):2891. PubMed ID: 35190557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight RFID Mutual Authentication Protocol with PUF.
    Zhu F; Li P; Xu H; Wang R
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating biopolymer design with physical unclonable functions for anticounterfeiting and product traceability in agriculture.
    Sun H; Maji S; Chandrakasan AP; Marelli B
    Sci Adv; 2023 Mar; 9(12):eadf1978. PubMed ID: 36947609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS).
    Ekinci KL
    Small; 2005 Aug; 1(8-9):786-97. PubMed ID: 17193524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using intrinsic properties of quantum dots to provide additional security when uniquely identifying devices.
    Fong MJ; Woodhead CS; Abdelazim NM; Abreu DC; Lamantia A; Ball EM; Longmate K; Howarth D; Robinson BJ; Speed P; Young RJ
    Sci Rep; 2022 Oct; 12(1):16919. PubMed ID: 36209282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Anticounterfeit Tags with High Encoding Capacity Rapidly Authenticated with Deep Machine Learning.
    Smith JD; Reza MA; Smith NL; Gu J; Ibrar M; Crandall DJ; Skrabalak SE
    ACS Nano; 2021 Feb; 15(2):2901-2910. PubMed ID: 33559464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Authentication of traditional Chinese herbal medicines (TCHM) by fingerprints of characteristic general constituents].
    Qin HL; Wang ZT; Xu LS; Zhao TZ
    Zhongguo Zhong Yao Za Zhi; 2001 Jan; 26(1):4-9. PubMed ID: 12525112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices.
    Mostafa A; Lee SJ; Peker YK
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random Organic Nanolaser Arrays for Cryptographic Primitives.
    Feng J; Wen W; Wei X; Jiang X; Cao M; Wang X; Zhang X; Jiang L; Wu Y
    Adv Mater; 2019 Sep; 31(36):e1807880. PubMed ID: 31328840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.
    Carro-Temboury MR; Arppe R; Vosch T; Sørensen TJ
    Sci Adv; 2018 Jan; 4(1):e1701384. PubMed ID: 29387788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.
    Nellore V; Xi S; Dwyer C
    ACS Nano; 2015 Dec; 9(12):11840-8. PubMed ID: 26525314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Message Integration Authentication in the Internet-of-Things via Lattice-Based Batch Signatures.
    Lu X; Yin W; Wen Q; Liang K; Chen L; Chen J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-counterfeit nanoscale fingerprints based on randomly distributed nanowires.
    Kim J; Yun JM; Jung J; Song H; Kim JB; Ihee H
    Nanotechnology; 2014 Apr; 25(15):155303. PubMed ID: 24651153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial tamper tests of novel tamper-indicating optical physical unclonable functions.
    Anderson BR; Gunawidjaja R; Eilers H
    Appl Opt; 2017 Apr; 56(10):2863-2872. PubMed ID: 28375254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.