BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34567716)

  • 1. Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board.
    Vollertsen AR; de Boer D; Dekker S; Wesselink BAM; Haverkate R; Rho HS; Boom RJ; Skolimowski M; Blom M; Passier R; van den Berg A; van der Meer AD; Odijk M
    Microsyst Nanoeng; 2020; 6():107. PubMed ID: 34567716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks.
    Carvalho DJ; Kip AM; Tegel A; Stich M; Krause C; Romitti M; Branca C; Verhoeven B; Costagliola S; Moroni L; Giselbrecht S
    Adv Healthc Mater; 2024 May; 13(13):e2303444. PubMed ID: 38247306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
    Araci IE; Quake SR
    Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Number and distribution of myofibroblasts and α-smooth muscle actin expression levels in fetal membranes with and without gestational complications.
    Ma X; Yang F; Yang S; Rasul A; Li T; Liu L; Kong M; Guo D; Ma T
    Mol Med Rep; 2015 Aug; 12(2):2784-92. PubMed ID: 25954927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-Driven Perfusion System to Control, Multiplex and Recirculate Cell Culture Medium for Organs-on-Chips.
    de Graaf MNS; Vivas A; van der Meer AD; Mummery CL; Orlova VV
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design.
    Qiu J; Gao Q; Zhao H; Fu J; He Y
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2606-2616. PubMed ID: 33465916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in microfluidic large scale integration.
    Araci IE; Brisk P
    Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control.
    Kang DH; Kim NK; Park SW; Lee W; Kang HW
    Lab Chip; 2020 Nov; 20(23):4433-4441. PubMed ID: 32832953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BiowareCFP: An Application-Agnostic Modular Reconfigurable Cyber-Fluidic Platform.
    Tanev G; Svendsen WE; Madsen J
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MainSTREAM component platform: a holistic approach to microfluidic system design.
    Sabourin D; Skafte-Pedersen P; Søe MJ; Hemmingsen M; Alberti M; Coman V; Petersen J; Emnéus J; Kutter JP; Snakenborg D; Jørgensen F; Clausen C; Holmstrøm K; Dufva M
    J Lab Autom; 2013 Jun; 18(3):212-28. PubMed ID: 23015520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Fluidic Platform for Semi-Automated Cell Culture into Multiwell-like Bioreactors.
    Orecchio FM; Tommaso V; Santaniello T; Castiglioni S; Pezzotta F; Monti A; Butera F; Maier JAM; Milani P
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.