These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34567716)

  • 21. Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip.
    de Graaf MNS; Vivas A; Kasi DG; van den Hil FE; van den Berg A; van der Meer AD; Mummery CL; Orlova VV
    Lab Chip; 2022 Dec; 23(1):168-181. PubMed ID: 36484766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics.
    Lai X; Lu B; Zhang P; Zhang X; Pu Z; Yu H; Li D
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6801-6810. PubMed ID: 33423473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue.
    Esch MB; Ueno H; Applegate DR; Shuler ML
    Lab Chip; 2016 Jul; 16(14):2719-29. PubMed ID: 27332143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic large-scale integration: the evolution of design rules for biological automation.
    Melin J; Quake SR
    Annu Rev Biophys Biomol Struct; 2007; 36():213-31. PubMed ID: 17269901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications.
    Özkayar G; Lötters JC; Tichem M; Ghatkesar MK
    Biomicrofluidics; 2022 Mar; 16(2):021302. PubMed ID: 35464136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions.
    Ong LJY; Ching T; Chong LH; Arora S; Li H; Hashimoto M; DasGupta R; Yuen PK; Toh YC
    Lab Chip; 2019 Jun; 19(13):2178-2191. PubMed ID: 31179467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reusable Standardized Universal Interface Module (RSUIM) for Generic Organ-on-a-Chip Applications.
    Sun Q; Pei J; Li Q; Niu K; Wang X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.
    Waldbaur A; Kittelmann J; Radtke CP; Hubbuch J; Rapp BE
    Lab Chip; 2013 Jun; 13(12):2337-43. PubMed ID: 23639992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing.
    Xie X; Maharjan S; Liu S; Zhang YS; Livermore C
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput-per-footprint inertial focusing.
    Ciftlik AT; Ettori M; Gijs MA
    Small; 2013 Aug; 9(16):2764-73, 2828. PubMed ID: 23420756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces.
    Abhyankar VV; Wu M; Koh CY; Hatch AV
    PLoS One; 2016; 11(5):e0156341. PubMed ID: 27227828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SmartBuild-a truly plug-n-play modular microfluidic system.
    Yuen PK
    Lab Chip; 2008 Aug; 8(8):1374-8. PubMed ID: 18651081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types.
    Huang JH; Harris JF; Nath P; Iyer R
    Biomed Microdevices; 2016 Oct; 18(5):88. PubMed ID: 27613401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a fully integrated platform and disposable microfluidic chips enabling parallel purification of genome segments for assembly.
    Kersaudy-Kerhoas M; Amalou F; Che A; Kelly J; Liu Y; Desmulliez MP; Shu W
    Biotechnol Bioeng; 2014 Aug; 111(8):1627-37. PubMed ID: 24615218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From chip-in-a-lab to lab-on-a-chip: a portable Coulter counter using a modular platform.
    Dekker S; Isgor PK; Feijten T; Segerink LI; Odijk M
    Microsyst Nanoeng; 2018; 4():34. PubMed ID: 31057922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.