BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34567729)

  • 1. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared.
    Lee D; Go M; Kim M; Jang J; Choi C; Kim JK; Rho J
    Microsyst Nanoeng; 2021; 7():14. PubMed ID: 34567729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography.
    Go M; Lee D; Kim S; Jang J; Kim KW; Lee J; Shim S; Kim JK; Rho J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3266-3273. PubMed ID: 36598796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks.
    Abedini Dereshgi S; Ghobadi A; Hajian H; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):14872. PubMed ID: 29093519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure.
    Aalizadeh M; Khavasi A; Butun B; Ozbay E
    Sci Rep; 2018 Jun; 8(1):9162. PubMed ID: 29907773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO
    Li H; Zhang C; Liu XC; Yu P; Chen WD; Xie ZW; Tang MJ; Zheng J; Li L
    Opt Express; 2022 Aug; 30(17):30911-30917. PubMed ID: 36242186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array.
    Zhou Y; Luo M; Shen S; Zhang H; Pu D; Chen L
    Opt Express; 2018 Oct; 26(21):27482-27491. PubMed ID: 30469814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers.
    Bricchi BR; Mascaretti L; Garattoni S; Mazza M; Ghidelli M; Naldoni A; Li Bassi A
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18453-18463. PubMed ID: 35436405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability.
    Wang W; Wang H; Yu P; Sun K; Tong X; Lin F; Wu C; You Y; Xie W; Li Y; Yuan C; Govorov AO; Muskens OL; Xu H; Sun S; Wang Z
    Opt Express; 2021 Oct; 29(21):33456-33466. PubMed ID: 34809157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.