These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34567781)

  • 1. Leakage pressures for gasketless superhydrophobic fluid interconnects for modular lab-on-a-chip systems.
    Brown CR; Zhao X; Park T; Chen PC; You BH; Park DS; Soper SA; Baird A; Murphy MC
    Microsyst Nanoeng; 2021; 7():69. PubMed ID: 34567781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic gasketless interconnects sealed by superhydrophobic surfaces.
    Zhao X; Park DS; Soper SA; Murphy MC
    J Microelectromech Syst; 2020 Oct; 29(5):894-899. PubMed ID: 33746475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Solvent-Assisted In-Mold Bonding of Cyclic Olefin Copolymer (COC) Microfluidic Chips.
    Li Q; Jiang B; Li X; Zhou M
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injection molded microfluidic chips featuring integrated interconnects.
    Mair DA; Geiger E; Pisano AP; Fréchet JM; Svec F
    Lab Chip; 2006 Oct; 6(10):1346-54. PubMed ID: 17102848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.
    Wouters S; De Vos J; Dores-Sousa JL; Wouters B; Desmet G; Eeltink S
    J Chromatogr A; 2017 Nov; 1523():224-233. PubMed ID: 28619590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2018 Feb; 18(4):639-647. PubMed ID: 29355276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
    Chen A; Pan T
    Lab Chip; 2011 Feb; 11(4):727-32. PubMed ID: 21109877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air bubble removal: Wettability contrast enabled microfluidic interconnects.
    Zhao X; Ma C; Park DS; Soper SA; Murphy MC
    Sens Actuators B Chem; 2022 Jun; 361():. PubMed ID: 35611132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of misalignment effects in microfluidic interconnects for modular bio-analytical chip applications.
    Rani SD; Park T; You BH; Soper SA; Murphy MC; Nikitopoulos DE
    Electrophoresis; 2013 Nov; 34(20-21):2988-95. PubMed ID: 23893860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.
    Hartmann DM; Nevill JT; Pettigrew KI; Votaw G; Kung PJ; Crenshaw HC
    Lab Chip; 2008 Apr; 8(4):609-16. PubMed ID: 18369517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Objective Design Automation for Microfluidic Capture Chips.
    Chen L; Grover WH; Sridharan M; Brisk P
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):467-479. PubMed ID: 36197858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and test of a microfluidic nebulizer chip for desorption electrospray ionization mass spectrometry.
    Sen AK; Darabi J; Knapp DR
    Sens Actuators B Chem; 2009 Apr; 137(2):789-796. PubMed ID: 20161284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microwave Platform for Reliable and Instant Interconnecting Combined with Microwave-Microfluidic Interdigital Capacitor Chips for Sensing Applications.
    Bao J; Maenhout G; Markovic T; Ocket I; Nauwelaers B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-space holographic optical interconnects for board-to-board and chip-to-chip interconnections.
    Yeh JH; Kostuk RK
    Opt Lett; 1996 Aug; 21(16):1274-6. PubMed ID: 19876323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hinge-based aligner for fast, large-scale assembly of microfluidic chips.
    Mou L; Hu B; Zhang J; Jiang X
    Biomed Microdevices; 2019 Jul; 21(3):69. PubMed ID: 31273551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry.
    Bedair MF; Oleschuk RD
    Anal Chem; 2006 Feb; 78(4):1130-8. PubMed ID: 16478104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
    Lee TY; Han K; Barrett DO; Park S; Soper SA; Murphy MC
    Sens Actuators B Chem; 2018 Jan; 254():1249-1258. PubMed ID: 29531428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.