These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34567847)
1. Comprehensive analysis of abnormal expression, prognostic value and oncogenic role of the hub gene FN1 in pancreatic ductal adenocarcinoma Lei X; Chen G; Li J; Wen W; Gong J; Fu J PeerJ; 2021; 9():e12141. PubMed ID: 34567847 [TBL] [Abstract][Full Text] [Related]
2. Identifying Ding J; Liu Y; Lai Y PeerJ; 2020; 8():e10419. PubMed ID: 33282565 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatic Analysis Suggests That Three Hub Genes May Be a Vital Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. Chang X; Yang MF; Fan W; Wang LS; Yao J; Li ZS; Li DF J Comput Biol; 2020 Nov; 27(11):1595-1609. PubMed ID: 32216644 [TBL] [Abstract][Full Text] [Related]
4. Identification of the hub gene BUB1B in hepatocellular carcinoma via bioinformatic analysis and in vitro experiments. Fu J; Zhang X; Yan L; Shao Y; Liu X; Chu Y; Xu G; Xu X PeerJ; 2021; 9():e10943. PubMed ID: 33665036 [TBL] [Abstract][Full Text] [Related]
5. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Shang M; Zhang L; Chen X; Zheng S Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587 [TBL] [Abstract][Full Text] [Related]
6. ITGA2, LAMB3, and LAMC2 may be the potential therapeutic targets in pancreatic ductal adenocarcinoma: an integrated bioinformatics analysis. Islam S; Kitagawa T; Baron B; Abiko Y; Chiba I; Kuramitsu Y Sci Rep; 2021 May; 11(1):10563. PubMed ID: 34007003 [TBL] [Abstract][Full Text] [Related]
7. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. Atay S PeerJ; 2020; 8():e10141. PubMed ID: 33194391 [TBL] [Abstract][Full Text] [Related]
8. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis. Zhou J; Hui X; Mao Y; Fan L Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31311829 [TBL] [Abstract][Full Text] [Related]
9. Identification of hub genes and analysis of prognostic values in pancreatic ductal adenocarcinoma by integrated bioinformatics methods. Lu Y; Li C; Chen H; Zhong W Mol Biol Rep; 2018 Dec; 45(6):1799-1807. PubMed ID: 30173393 [TBL] [Abstract][Full Text] [Related]
10. Screening and validating the core biomarkers in patients with pancreatic ductal adenocarcinoma. Li Y; Zhu YY; Dai GP; Wu DJ; Gao ZZ; Zhang L; Fan YH Math Biosci Eng; 2019 Nov; 17(1):910-927. PubMed ID: 31731384 [TBL] [Abstract][Full Text] [Related]
11. Identification of potential hub genes associated with the pathogenesis and prognosis of pancreatic duct adenocarcinoma using bioinformatics meta-analysis of multi-platform datasets. Ma Y; Pu Y; Peng L; Luo X; Xu J; Peng Y; Tang X Oncol Lett; 2019 Dec; 18(6):6741-6751. PubMed ID: 31807183 [TBL] [Abstract][Full Text] [Related]
12. Identification of prognostic risk factors for pancreatic cancer using bioinformatics analysis. Jin D; Jiao Y; Ji J; Jiang W; Ni W; Wu Y; Ni R; Lu C; Qu L; Ni H; Liu J; Xu W; Xiao M PeerJ; 2020; 8():e9301. PubMed ID: 32587798 [TBL] [Abstract][Full Text] [Related]
13. Integrated bioinformatics analysis of microarray data from the GEO database to identify the candidate genes linked to poor prognosis in lung adenocarcinoma. Liu X; Li L; Xie X; Zhuang D; Hu C Technol Health Care; 2023; 31(2):579-592. PubMed ID: 36336945 [TBL] [Abstract][Full Text] [Related]
14. Identification of differentially expressed genes in pancreatic ductal adenocarcinoma and normal pancreatic tissues based on microarray datasets. Liu L; Wang S; Cen C; Peng S; Chen Y; Li X; Diao N; Li Q; Ma L; Han P Mol Med Rep; 2019 Aug; 20(2):1901-1914. PubMed ID: 31257501 [TBL] [Abstract][Full Text] [Related]
15. Four potential microRNAs affect the progression of pancreatic ductal adenocarcinoma by targeting MET via the PI3K/AKT signaling pathway. Yao LC; Jiang XH; Yan SS; Wang W; Wu L; Zhai LL; Xiang F; Ji T; Ye L; Tang ZG Oncol Lett; 2021 Apr; 21(4):326. PubMed ID: 33692858 [TBL] [Abstract][Full Text] [Related]
16. Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach. Wang Y; Li Y Asian Pac J Cancer Prev; 2015; 16(6):2561-7. PubMed ID: 25824797 [TBL] [Abstract][Full Text] [Related]
17. Construction of a prognostic prediction system for pancreatic ductal adenocarcinoma to investigate the key prognostic genes. Zheng B; Peng J; Mollayup A; Bakri A; Guo L; Zheng J; Xu H Mol Med Rep; 2018 Jan; 17(1):216-224. PubMed ID: 29115420 [TBL] [Abstract][Full Text] [Related]
18. Identification of Key Prognostic Biomarker and Its Correlation with Immune Infiltrates in Pancreatic Ductal Adenocarcinoma. Luan H; Zhang C; Zhang T; He Y; Su Y; Zhou L Dis Markers; 2020; 2020():8825997. PubMed ID: 32934754 [TBL] [Abstract][Full Text] [Related]
19. Upregulation of ASPM, BUB1B and SPDL1 in tumor tissues predicts poor survival in patients with pancreatic ductal adenocarcinoma. Tian X; Wang N Oncol Lett; 2020 Apr; 19(4):3307-3315. PubMed ID: 32218868 [TBL] [Abstract][Full Text] [Related]
20. circRNA circ_102049 Implicates in Pancreatic Ductal Adenocarcinoma Progression through Activating CD80 by Targeting miR-455-3p. Zhu J; Zhou Y; Zhu S; Li F; Xu J; Zhang L; Shu H Mediators Inflamm; 2021; 2021():8819990. PubMed ID: 33505218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]