These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 34567999)

  • 1. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model.
    Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F
    Front Oncol; 2021; 11():618604. PubMed ID: 34567999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonenhanced MRI-based radiomics model for preoperative prediction of nonperfused volume ratio for high-intensity focused ultrasound ablation of uterine leiomyomas.
    Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F
    Int J Hyperthermia; 2021; 38(1):1349-1358. PubMed ID: 34486913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction using T2-weighted magnetic resonance imaging-based radiomics of residual uterine myoma regrowth after high-intensity focused ultrasound ablation.
    Zhou Y; Zhang J; Chen J; Yang C; Gong C; Li C; Li F
    Ultrasound Obstet Gynecol; 2022 Nov; 60(5):681-692. PubMed ID: 36054291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.
    Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST
    Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas.
    Dai M; Liu Y; Hu Y; Li G; Zhang J; Xiao Z; Lv F
    Eur Radiol; 2022 Nov; 32(11):7988-7997. PubMed ID: 35583712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach.
    Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y
    Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric MRI-based machine learning models for preoperatively predicting rectal adenoma with canceration.
    Li P; Song G; Wu R; Li H; Zhang R; Zuo P; Li A
    MAGMA; 2021 Oct; 34(5):707-716. PubMed ID: 33646452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study.
    Xv Y; Lv F; Guo H; Zhou X; Tan H; Xiao M; Zheng Y
    Insights Imaging; 2021 Nov; 12(1):170. PubMed ID: 34800179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.
    Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L
    Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors.
    Wang H; Hu D; Yao H; Chen M; Li S; Chen H; Luo J; Feng Y; Guo Y
    Eur Radiol; 2019 Nov; 29(11):6182-6190. PubMed ID: 31016445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoperative prediction of sonic hedgehog and group 4 molecular subtypes of pediatric medulloblastoma based on radiomics of multiparametric MRI combined with clinical parameters.
    Wang Y; Wang L; Qin B; Hu X; Xiao W; Tong Z; Li S; Jing Y; Li L; Zhang Y
    Front Neurosci; 2023; 17():1157858. PubMed ID: 37113160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors.
    Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X
    Front Oncol; 2022; 12():913898. PubMed ID: 35847942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis.
    Liang M; Cai Z; Zhang H; Huang C; Meng Y; Zhao L; Li D; Ma X; Zhao X
    Acad Radiol; 2019 Nov; 26(11):1495-1504. PubMed ID: 30711405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features.
    Ma X; Shen F; Jia Y; Xia Y; Li Q; Lu J
    BMC Med Imaging; 2019 Nov; 19(1):86. PubMed ID: 31747902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression.
    Cong L; Hua QQ; Huang ZQ; Ma QL; Wang XM; Huang CC; Xu JX; Ma T
    Eur Rev Med Pharmacol Sci; 2021 Sep; 25(18):5769-5780. PubMed ID: 34604968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning to Differentiate T2-Weighted Hyperintense Uterine Leiomyomas from Uterine Sarcomas by Utilizing Multiparametric Magnetic Resonance Quantitative Imaging Features.
    Nakagawa M; Nakaura T; Namimoto T; Iyama Y; Kidoh M; Hirata K; Nagayama Y; Yuki H; Oda S; Utsunomiya D; Yamashita Y
    Acad Radiol; 2019 Oct; 26(10):1390-1399. PubMed ID: 30661978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature.
    Zhang L; Zhe X; Tang M; Zhang J; Ren J; Zhang X; Li L
    Contrast Media Mol Imaging; 2021; 2021():7830909. PubMed ID: 35024015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.