These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34568306)

  • 1. Microfluidic Preparation of Janus Microparticles With Temperature and pH Triggered Degradation Properties.
    Feng ZY; Liu TT; Sang ZT; Lin ZS; Su X; Sun XT; Yang HZ; Wang T; Guo S
    Front Bioeng Biotechnol; 2021; 9():756758. PubMed ID: 34568306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic preparation of polymer-lipid Janus microparticles with staged drug release property.
    Sun XT; Guo R; Wang DN; Wei YY; Yang CG; Xu ZR
    J Colloid Interface Sci; 2019 Oct; 553():631-638. PubMed ID: 31247502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.
    Matsumoto A; Murao S; Matsumoto M; Watanabe C; Murakami M
    Drug Discov Ther; 2016; 10(6):307-313. PubMed ID: 28090069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles.
    Hussain M; Xie J; Hou Z; Shezad K; Xu J; Wang K; Gao Y; Shen L; Zhu J
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14391-14400. PubMed ID: 28367618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles.
    Xu S; Nisisako T
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33383964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Production of Biodegradable Bipolymer Patchy and Patchy Janus Particles with Controlled Morphology by Microfluidic Routes.
    Ekanem EE; Zhang Z; Vladisavljević GT
    Langmuir; 2017 Aug; 33(34):8476-8482. PubMed ID: 28776999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.
    Perez A; Hernández R; Velasco D; Voicu D; Mijangos C
    J Colloid Interface Sci; 2015 Mar; 441():90-7. PubMed ID: 25490568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties.
    Tu F; Lee D
    J Am Chem Soc; 2014 Jul; 136(28):9999-10006. PubMed ID: 24791976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Responsive Janus Particles as Microsurfactants for On-Demand Coalescence of Emulsions.
    Hwang YH; Jeon K; Ryu SA; Kim DP; Lee H
    Small; 2020 Dec; 16(49):e2005159. PubMed ID: 33191628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Morphology in Polystyrene/Poly(lactic acid) Blend Particles: Solvent's Effect on Controlled Janus/Core-Shell Structures.
    Esteki B; Masoomi M; Asadinezhad A
    Langmuir; 2023 Oct; 39(43):15306-15318. PubMed ID: 37864780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles.
    Panyam J; Dali MM; Sahoo SK; Ma W; Chakravarthi SS; Amidon GL; Levy RJ; Labhasetwar V
    J Control Release; 2003 Sep; 92(1-2):173-87. PubMed ID: 14499195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System.
    Song Q; Chao Y; Zhang Y; Shum HC
    J Phys Chem B; 2021 Jan; 125(2):562-570. PubMed ID: 33416329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery.
    Khan IU; Stolch L; Serra CA; Anton N; Akasov R; Vandamme TF
    Int J Pharm; 2015 Jan; 478(1):78-87. PubMed ID: 25307961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release.
    Kim HU; Choi DG; Roh YH; Shim MS; Bong KW
    Small; 2016 Jul; 12(25):3463-70. PubMed ID: 27197594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.
    Jeong J; Gross A; Wei WS; Tu F; Lee D; Collings PJ; Yodh AG
    Soft Matter; 2015 Sep; 11(34):6747-54. PubMed ID: 26171829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation.
    Hussain M; Xie J; Wang K; Wang H; Tan Z; Liu Q; Geng Z; Shezad K; Noureen L; Jiang H; Xu J; Zhang L; Zhu J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42734-42743. PubMed ID: 31622077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications.
    Swider E; Koshkina O; Tel J; Cruz LJ; de Vries IJM; Srinivas M
    Acta Biomater; 2018 Jun; 73():38-51. PubMed ID: 29653217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.