BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34568679)

  • 1. Fluoropolymer Microemulsion: Preparation and Application in Reservoir Wettability Reversal and Enhancing Oil Recovery.
    Liang L; Wang Y; Liu B; Gong J; Zhang C
    ACS Omega; 2021 Sep; 6(37):24009-24015. PubMed ID: 34568679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoropolymer: A Review on Its Emulsion Preparation and Wettability to Solid-Liquid Interface.
    Liang L; Wen T; Xin J; Su C; Song K; Zhao W; Liu H; Su G
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Novel High-Temperature Microemulsion for Enhanced Oil Recovery in Tight Oil Reservoirs.
    Xiao L; Hou J; Wang W; Raj I
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a Superhydrophobic Fluorinated Nano-Emulsion and Its Modification on the Wettability of Tight Sandstone.
    Li Q; Fan Z; Liu Q; Ma W; Li J; Li N; Ma P; Zhang H
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Influence of Different Factors on Spontaneous Oil Recovery of Nanosurfactants in a Tight Reservoir.
    Wang J; Zhang J; Song L; Jiang H; Xu H; Yang K; Ke W
    ACS Omega; 2021 Aug; 6(30):19378-19385. PubMed ID: 34368524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influencing Factors of Surfactant Stripping Crude Oil and Spontaneous Imbibition Mechanism of Surfactants in a Tight Reservoir.
    Cao G; Cheng Q; Liu Y; Bu R; Zhang N; Wang P
    ACS Omega; 2022 Jun; 7(22):19010-19020. PubMed ID: 35694475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Wettability Alteration of Tight Sandstone by Low-Frequency Vibration and Nanofluid.
    Gu X; Yan D; Zhang Z; Liu Z; Jing C; Meng X; Liu Y
    ACS Omega; 2024 Feb; 9(5):5705-5714. PubMed ID: 38343962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Amphiphilic Janus-SiO
    Tang S; Sun Z; Dong Y; Zhu Y; Hu H; Wang R; Liao H; Dai Q
    ACS Omega; 2024 Feb; 9(5):5838-5845. PubMed ID: 38343949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Law and Mechanism of the Sample Size Effect of Imbibition Oil Recovery of Tight Sedimentary Tuff.
    Li S; Yang S; Dong W; Wang M; Yu J
    ACS Omega; 2022 Jan; 7(2):1956-1974. PubMed ID: 35071885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.
    Rabiei A; Sharifinik M; Niazi A; Hashemi A; Ayatollahi S
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5979-91. PubMed ID: 23553033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion.
    Bae J; Kim H; Kim KS; Choi H
    Chemosphere; 2018 Aug; 204():235-242. PubMed ID: 29660536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review.
    Ding F; Gao M
    Adv Colloid Interface Sci; 2021 Mar; 289():102377. PubMed ID: 33601298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Investigation of Hydrophobically Modified α-ZrP Nanosheets for Enhancing Oil Recovery in Low-Permeability Sandstone Cores.
    Chen H; Qing S; Ye ZB; Han LJ; Wang X; Xu L; Liu ZK
    ACS Omega; 2019 Dec; 4(26):22178-22186. PubMed ID: 31891100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of N-ethyl-N-hydroxyethyl perfluorooctanoamide on wettability alteration of shale reservoir.
    Li Y; Wang Y; Wang K; Gomado F; Wang G; Tang L; Rong X
    Sci Rep; 2018 May; 8(1):6941. PubMed ID: 29720712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications.
    Li L; Yan Z; Jin M; You X; Xie S; Liu Z; van den Berg A; Eijkel JCT; Shui L
    ACS Appl Mater Interfaces; 2019 May; 11(18):16934-16943. PubMed ID: 30983312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.