BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34568679)

  • 21. Green Surfactant Made from Cashew Phenol for Enhanced Oil Recovery.
    Wang J; Gu F; Han W; Fu L; Dong S; Zhang Z; Ren Z; Liao K
    ACS Omega; 2023 Jan; 8(2):2057-2064. PubMed ID: 36687061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Investigation on the Pore-Scale Mechanism of Improved Sweep Efficiency by Low-Salinity Water Flooding Using a Reservoir-on-a-Chip.
    Li S; Liu Y; Xue L; Yang L; Yuan Z
    ACS Omega; 2021 Aug; 6(32):20984-20991. PubMed ID: 34423206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity.
    Bila A; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties?
    Destribats M; Gineste S; Laurichesse E; Tanner H; Leal-Calderon F; Héroguez V; Schmitt V
    Langmuir; 2014 Aug; 30(31):9313-26. PubMed ID: 25055160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
    Liu Q; Chang X; Shan Y; Fu F; Ding S
    J Sci Food Agric; 2021 Jul; 101(9):3630-3643. PubMed ID: 33275778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of heavy oil recovery mechanisms using in-situ synthesized CeO
    Mehrooz N; Gharibshahi R; Jafari A; Shadan B; Delavari H; Sadeghnejad S
    Sci Rep; 2024 May; 14(1):11652. PubMed ID: 38773210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation.
    Zeng X; Qian L; Yuan X; Zhou C; Li Z; Cheng J; Xu S; Wang S; Pi P; Wen X
    ACS Nano; 2017 Jan; 11(1):760-769. PubMed ID: 27936586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point.
    Stammitti-Scarpone A; Acosta EJ
    Langmuir; 2019 Mar; 35(12):4305-4318. PubMed ID: 30821467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production, Characterization, and Application of
    Joshi SJ; Al-Wahaibi YM; Al-Bahry SN; Elshafie AE; Al-Bemani AS; Al-Bahri A; Al-Mandhari MS
    Front Microbiol; 2016; 7():1853. PubMed ID: 27933041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation on the Mechanisms of Spontaneous Imbibition at High Pressures for Tight Oil Recovery.
    Wang C; Gao H; Qi Y; Li X; Zhang R; Fan H
    ACS Omega; 2020 Jun; 5(22):12727-12734. PubMed ID: 32548456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization.
    Kredel J; Dietz C; Gallei M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30658515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Sandstone Wetting Reversal Induced by Low Temperature Plasma on the Oil Droplet Scouring under Flowing Water.
    Dou X; Xu P; Liu J
    ACS Omega; 2022 Dec; 7(50):46946-46954. PubMed ID: 36570201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose.
    Jia Y; Zhai X; Fu W; Liu Y; Li F; Zhong C
    Carbohydr Polym; 2016 Oct; 151():907-915. PubMed ID: 27474639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomimetic Fabrication of Janus Fabric with Asymmetric Wettability for Water Purification and Hydrophobic/Hydrophilic Patterned Surfaces for Fog Harvesting.
    Zhu R; Liu M; Hou Y; Zhang L; Li M; Wang D; Wang D; Fu S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50113-50125. PubMed ID: 33085450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation.
    Nwidee LN; Lebedev M; Barifcani A; Sarmadivaleh M; Iglauer S
    J Colloid Interface Sci; 2017 Oct; 504():334-345. PubMed ID: 28577448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan.
    Jin W; Zhu J; Jiang Y; Shao P; Li B; Huang Q
    J Agric Food Chem; 2017 Feb; 65(7):1401-1409. PubMed ID: 28132504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.
    Mohammed M; Babadagli T
    Adv Colloid Interface Sci; 2015 Jun; 220():54-77. PubMed ID: 25798909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the Static and Dynamic Imbibition Effect of Surfactants and the Relative Mechanism in Low-Permeability Reservoirs.
    Tian F; Zhao Y; Yan Y; Gou X; Shi L; Qin F; Shi J; Lv J; Cao B; Li Y; Lu X
    ACS Omega; 2020 Jul; 5(28):17442-17449. PubMed ID: 32715229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of low-field,
    Shikhov I; Thomas DS; Rawal A; Yao Y; Gizatullin B; Hook JM; Stapf S; Arns CH
    Magn Reson Imaging; 2019 Feb; 56():77-85. PubMed ID: 30316982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.