These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34569148)

  • 1. 2D High-Entropy Hydrotalcites.
    Yu X; Wang B; Wang C; Zhuang C; Yao Y; Li Z; Wu C; Feng J; Zou Z
    Small; 2021 Nov; 17(45):e2103412. PubMed ID: 34569148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides.
    Li F; Sun SK; Chen Y; Naka T; Hashishin T; Maruyama J; Abe H
    Nanoscale Adv; 2022 May; 4(11):2468-2478. PubMed ID: 36134132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous High-entropy Non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction.
    Jiang S; Tian K; Li X; Duan C; Wang D; Wang Z; Sun H; Zheng R; Liu Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):635-644. PubMed ID: 34416456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Characterization of High-Entropy Dawsonite-Type Structures.
    Knorpp AJ; Allegri P; Huangfu S; Vogel A; Stuer M
    Inorg Chem; 2023 Mar; 62(12):4999-5007. PubMed ID: 36907992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Novel High-Entropy Protective Materials: Wear, Irradiation, and Erosion Resistance Properties.
    Feltrin AC; Xing Q; Akinwekomi AD; Waseem OA; Akhtar F
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-entropy materials for catalysis: A new frontier.
    Sun Y; Dai S
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33980494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-Level Design Strategy to Construct an Advanced High-Entropy Co-Cu-Fe-Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolution Reaction.
    Zhang L; Cai W; Bao N
    Adv Mater; 2021 Jun; 33(22):e2100745. PubMed ID: 33876867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-entropy materials for energy-related applications.
    Fu M; Ma X; Zhao K; Li X; Su D
    iScience; 2021 Mar; 24(3):102177. PubMed ID: 33718829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Framework-Guided Universal Design of High-Entropy Compounds for Efficient Energy Catalysis.
    Wu H; Lu Q; Li Y; Zhao M; Wang J; Li Y; Zhang J; Zheng X; Han X; Zhao N; Li J; Liu Y; Deng Y; Hu W
    J Am Chem Soc; 2023 Jan; 145(3):1924-1935. PubMed ID: 36571792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction.
    Chen P; Xu K; Fang Z; Tong Y; Wu J; Lu X; Peng X; Ding H; Wu C; Xie Y
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14710-4. PubMed ID: 26437900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction.
    Wen T; Liu M; Chen S; Li Q; Du Y; Zhou T; Ritchie C; Zhang J
    Small; 2020 Jul; 16(28):e1907669. PubMed ID: 32529762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally-Friendly Exfoliate and Active Site Self-Assembly: Thin 2D/2D Heterostructure Amorphous Nickel-Iron Alloy on 2D Materials for Efficient Oxygen Evolution Reaction.
    Wang Y; Zhou Y; Han M; Xi Y; You H; Hao X; Li Z; Zhou J; Song D; Wang D; Gao F
    Small; 2019 Apr; 15(16):e1805435. PubMed ID: 30941892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction.
    Cui L; Zhang W; Zheng R; Liu J
    Chemistry; 2020 Sep; 26(51):11661-11672. PubMed ID: 32320104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorene-Based Electrocatalysts.
    Dinh KN; Zhang Y; Zhu J; Sun W
    Chemistry; 2020 May; 26(29):6437-6446. PubMed ID: 32030814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel-Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability.
    Godínez-Salomón F; Mendoza-Cruz R; Arellano-Jimenez MJ; Jose-Yacaman M; Rhodes CP
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18660-18674. PubMed ID: 28497954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-range order and its impact on the CrCoNi medium-entropy alloy.
    Zhang R; Zhao S; Ding J; Chong Y; Jia T; Ophus C; Asta M; Ritchie RO; Minor AM
    Nature; 2020 May; 581(7808):283-287. PubMed ID: 32433617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis.
    Wu H; Wang J; Jin W; Wu Z
    Nanoscale; 2020 Sep; 12(36):18497-18522. PubMed ID: 32839807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis.
    Debecker DP; Gaigneaux EM; Busca G
    Chemistry; 2009; 15(16):3920-35. PubMed ID: 19301329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.