These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34569568)
1. DART: deep learning enabled topological interaction model for energy prediction of metal clusters and its application in identifying unique low energy isomers. Modee R; Agarwal S; Verma A; Joshi K; Priyakumar UD Phys Chem Chem Phys; 2021 Oct; 23(38):21995-22003. PubMed ID: 34569568 [TBL] [Abstract][Full Text] [Related]
2. FCHL revisited: Faster and more accurate quantum machine learning. Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071 [TBL] [Abstract][Full Text] [Related]
3. Combining artificial intelligence and physics-based modeling to directly assess atomic site stabilities: from sub-nanometer clusters to extended surfaces. Lamoureux PS; Choksi TS; Streibel V; Abild-Pedersen F Phys Chem Chem Phys; 2021 Oct; 23(38):22022-22034. PubMed ID: 34570139 [TBL] [Abstract][Full Text] [Related]
4. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules. Laghuvarapu S; Pathak Y; Priyakumar UD J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368 [TBL] [Abstract][Full Text] [Related]
5. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network. Lu J; Wang C; Zhang Y J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110 [TBL] [Abstract][Full Text] [Related]
6. Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states. Husch T; Sun J; Cheng L; Lee SJR; Miller TF J Chem Phys; 2021 Feb; 154(6):064108. PubMed ID: 33588560 [TBL] [Abstract][Full Text] [Related]
7. ESCAPE: A novel approach for a fast estimation of dynamic correlation energies: Application to large organic molecules. Warczinski L; Franke R; Staemmler V J Comput Chem; 2019 Oct; 40(28):2491-2501. PubMed ID: 31343760 [TBL] [Abstract][Full Text] [Related]
8. Topological representations of crystalline compounds for the machine-learning prediction of materials properties. Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106 [TBL] [Abstract][Full Text] [Related]
9. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Sun G; Sautet P J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216 [TBL] [Abstract][Full Text] [Related]
10. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships. Janet JP; Kulik HJ J Phys Chem A; 2017 Nov; 121(46):8939-8954. PubMed ID: 29095620 [TBL] [Abstract][Full Text] [Related]
11. Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. Gu GH; Noh J; Kim S; Back S; Ulissi Z; Jung Y J Phys Chem Lett; 2020 May; 11(9):3185-3191. PubMed ID: 32191473 [TBL] [Abstract][Full Text] [Related]
12. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions. Di Pasquale N; Davie SJ; Popelier PLA J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints. Rahaman O; Gagliardi A J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351 [TBL] [Abstract][Full Text] [Related]
15. Multitask Deep Ensemble Prediction of Molecular Energetics in Solution: From Quantum Mechanics to Experimental Properties. Xia S; Zhang D; Zhang Y J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36607141 [TBL] [Abstract][Full Text] [Related]
16. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
17. Benchmark study on deep neural network potentials for small organic molecules. Modee R; Laghuvarapu S; Priyakumar UD J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332 [TBL] [Abstract][Full Text] [Related]
18. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms. Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388 [TBL] [Abstract][Full Text] [Related]
19. Fast and accurate prediction of partial charges using Atom-Path-Descriptor-based machine learning. Wang J; Cao D; Tang C; Chen X; Sun H; Hou T Bioinformatics; 2020 Sep; 36(18):4721-4728. PubMed ID: 32525553 [TBL] [Abstract][Full Text] [Related]
20. Atomic Energies from a Convolutional Neural Network. Chen X; Jørgensen MS; Li J; Hammer B J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]